GD&T

Tolerance Stack-up Analysis

© 2018, Omnex, Inc. 325 East Eisenhower Parkway, Suite 4 Ann Arbor, MI 48108 PH: (734) 761-4940 FAX: (734) 761-4966

> Second Edition May 2007

This publication is protected by Federal Copyright Law, with all rights reserved. No part of this publication may be reproduced, stored in a retrieval system, translated, transcribed, or transmitted, in any form, or by any means manual, electronic, electro-magnetic, mechanical, chemical, optical, or otherwise, without prior explicit written permission from Omnex, Inc.

Omnex provides training, consulting and software solutions to the international market with offices in the USA, Canada, Mexico, China (PRC), Germany, India, the Middle East, and SE Asia. Omnex offers over 400 standard and customized training courses in business, quality, environmental, food safety, laboratory and health & safety management systems worldwide.

> Email: info@omnex.com Web: www.omnex.com

A BRIEF INTRODUCTION TO OMNEX

Omnex Introduction

- International consulting, training and software development organization founded in 1985.
- Specialties:
 - Integrated management system solutions.
 - Elevating the performance of client organizations.
 - Consulting and training services in:
 - Quality Management Systems, e.g. ISO 9001, IATF 16949, AS9100, QOS
 - Environmental Management Systems, e.g. ISO 14001
 - Health and Safety Management Systems, e.g. OHSAS 18001
- Leader in Lean, Six Sigma and other breakthrough systems and performance enhancement.
 - Provider of Lean Six Sigma services to Automotive Industry via AIAG alliance.

About Omnex

- Headquartered in Ann Arbor, Michigan with offices in major global markets.
- In 1995-97 provided global roll out supplier training and development for Ford Motor Company.
- Trained more than 100,000 individuals in over 30 countries.
- Workforce of over 400 professionals, speaking over a dozen languages.
- Former Delegation Leader of the International Automotive Task Force (IATF) responsible for ISO/TS 16949.
- Served on committees that wrote QOS, ISO 9001:2000, QS-9000, ISO/TS 16949 and its Semiconductor Supplement, and ISO IWA 1 (ISO 9000 for healthcare).
- Member of AIAG manual writing committees for FMEA, SPC, MSA, Sub-tier Supplier Development, Error Proofing, and Effective Problem Solving (EPS).

Omnex Worldwide Offices

Omnex is headquartered and operates from the United States through offices in Michigan.

The company maintains international operations in many countries to provide comprehensive services to clients throughout Western Europe, Latin America and the Pacific Rim.

> www.omnex.com info@omnex.com

OMNEX

WWW.WOMMENO, KOMMENC.COM

Rules of the Classroom

- Start and end on time
- Return from breaks and lunch on time
- All questions welcome
- ✓ Your input is valuable and is encouraged
- Don't interrupt others
- One meeting at a time
- Listen and respect others' ideas
- No "buts" keep an open mind
- Cell phones & pagers off or silent mode
- ✓ No e-mails, texting or tweeting during class
- If you must take a phone call or answer a text please leave the room for as short a period as possible

Icebreaker

- Instructor Information:
 - Name
 - Background
- Student Introductions:
 - Name
 - Position / Responsibilities
 - What is your involvement in the GDT?
 - What are your experiences with GDT?
 - Please share something unique and/or interesting about yourself.

Chapter #1

Tolerance Stack-up Introduction

Chapter #1 Tolerance Stack-up Introduction

What is Dimension and Tolerance

There are two components to the definition of part geometry:

nominal state: Nominal Dimension:
 allowable variation: Tolerance :

Two dimensioning system: OMNEX

plus/minus dimensions and tolerances
 GD&T Geometric Dimensioning and Tolerancing GD&T

Or combination of both systems.

the best way to tolerance features is by using GD&T. GD&T is the only way to ensure that everyone interprets the dimensioning and tolerancing specifications the same way.

Tolerance Stack up Questions

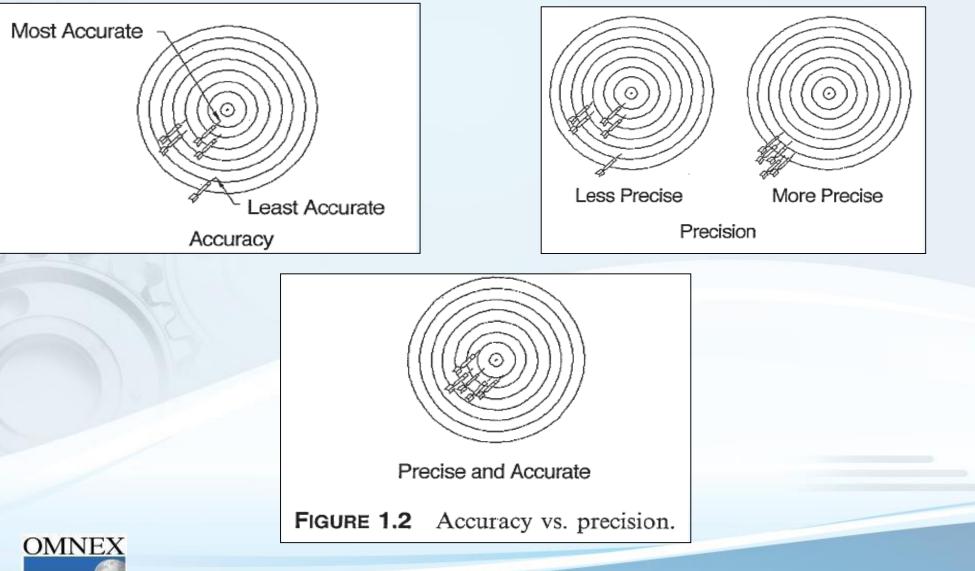
Tolerance Stack ups provide a numerical answer to a question. Typical questions include:

- Will these two surfaces interfere?
- ullet What is the minimum distance between the bolt head and the flange at 90 $^\circ\,$?
- What is the maximum thickness of the two parts that must fit within this groove?
- Will the pin fit within the hole?
- How large can the body of the switch be and still assemble?
- What is the worst-case largest angle possible between these surfaces?
- How do I know if the worst-case assembly will satisfy its dimensional objectives?
- If we reduce the size of the clearance holes, will the parts still assemble?

• Will the dimensioning and tolerancing scheme used on the parts allow too much variation at assembly? Should the drawings be redimensioned and retoleranced to reduce the accumulation of tolerances?

• If we chuck the part using this diameter, how much tolerance is allowed for the smaller coaxial diameter?

Tolerance Stack up Target

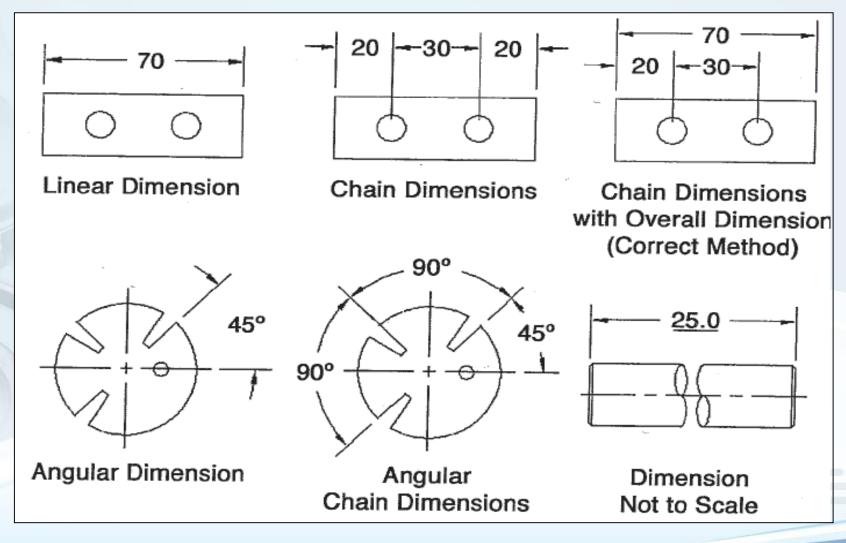

- **1.** Optimize the tolerances of parts and assemblies in a new design.
- 2. Balance accuracy, precision, and cost with manufacturing process capability.
- 3. Determine the part tolerances required to satisfy a final assembly condition.
- 4. Determine the allowable part tolerances if the assembly tolerance is known.
- 5. Determine if the parts will work at their worst-case condition or with the maximum statistical variation.
- 6. Determine if the specified part tolerances yield an acceptable amount of variation between assembled components.
- 7. Troubleshoot malfunctioning existing parts or assemblies.
- 8. Determine the effect changing a tolerance value will have on assembly function.
- 9. Explore design alternatives using different or modified parts.

Chapter #1 Tolerance Stack-up Introduction

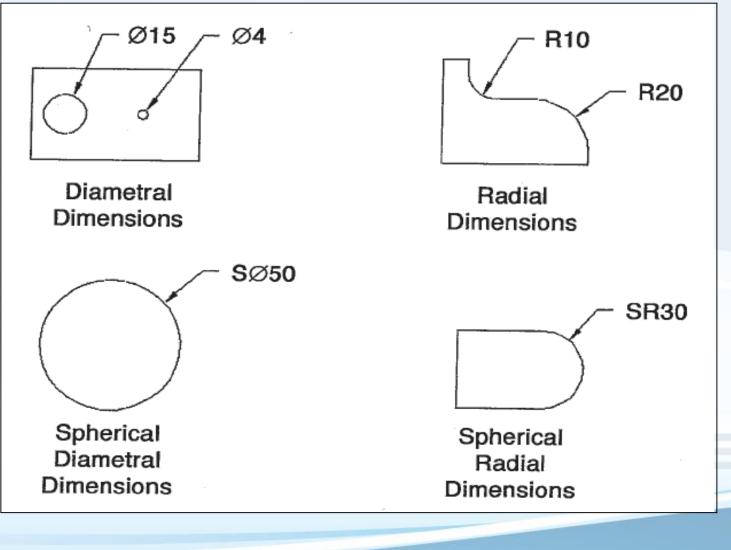
Accuracy vs Precision

WWW.OMNEX.COM

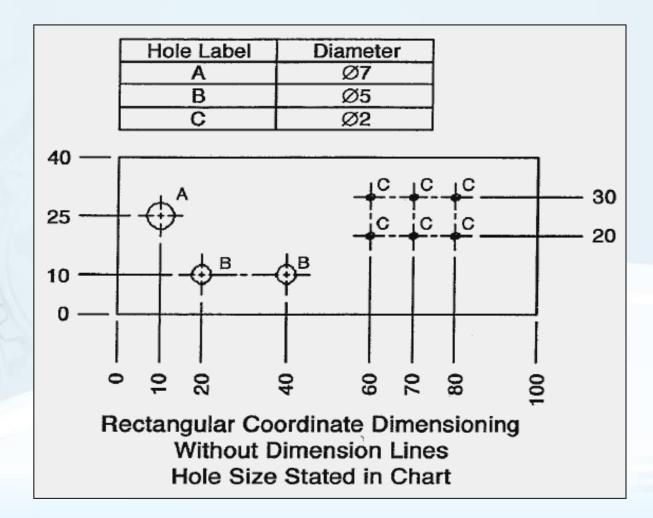
Copyright 2018 Omnex, Inc. All Rights Reserved.

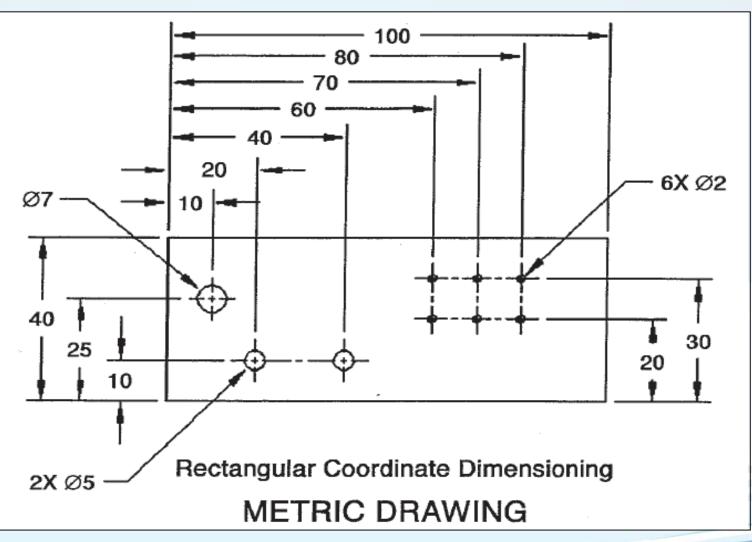

Chapter #2

Dimensioning and Tolerancing



Types Of Dimensions - Linear and angular dimensions

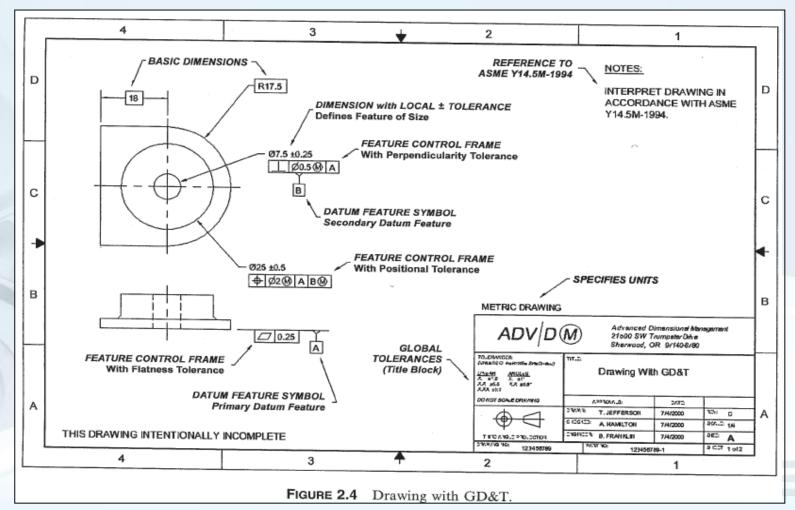

Types Of Dimensions - Linear and angular dimensions


OMNEX

Types Of Dimensions - Rectangular' coordinate dimensioning

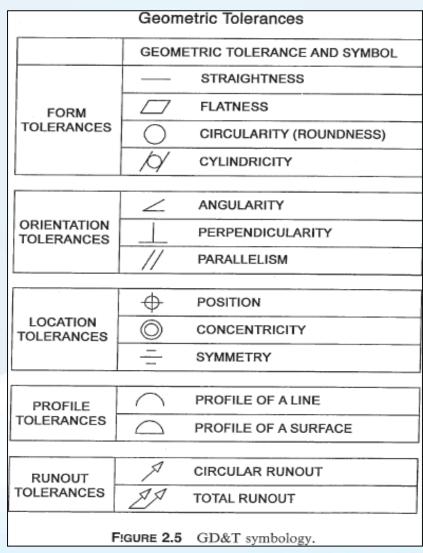
Types Of Dimensions - Rectangular' coordinate dimensioning

How to Specify Tolerance


- Tolerances may be stated specifically or generically as described below:
 - **1. Title Block or General Note Tolerances**
 - **2. Local Plus/Minus Tolerances**
 - 3. GD&T .o.m.n.ex

Note: only linear units may be specified in a feature control frame

Dimensions must be arranged and related in such a way to minimize tolerance accumulation between related features.



GD&T Drawing

Geometric Tolerance Symbol

four types of tolerances:

- Size tolerances
- Form tolerances
- Orientation tolerances
- Location tolerances

• Size:

Only features of size have size as defined in the ASME Y14.5M-1994 standard. Therefore, only those features that are features of size require a size tolerance.

Some features, such as a single planar feature, do not have size characteristics and therefore do not require a size tolerance to be completely defined.

Form

every feature must have a form tolerance, either directly or indirectly specified.

directly specified form tolerances include flatness, circularity, cylindricity, and straightness.

indirectly specified form tolerance comes with rule #1, a profile of a surface tolerance to a basically defined surface. profile of a surface may control form, orientation, location, and possibly even size

indirect methods of controlling form can be overridden by specifying a form tolerance with a smaller value.

Orientation

can be considered as the angle between features, or more precisely, orientation is the amount a feature may tilt relative to a datum reference frame.

Aside from the primary datum feature, every feature on a part is oriented to other features. A primary datum feature is exempt because all other features are directly or indirectly oriented to it.

Feature Characteristics And Associated Tolerance Types

- Orientation may also be controlled directly or indirectly.
- Dimensions with \pm tolerances for all features rely on the default angular \pm tolerance in the title block to control the orientation of all features.
- Other methods of indirectly specifying an orientation tolerance occur where a profile of a surface tolerance is related to a datum reference frame and where a positional tolerance is related to a datum reference frame—both of these cases control orientation and may also control size, form, and location.

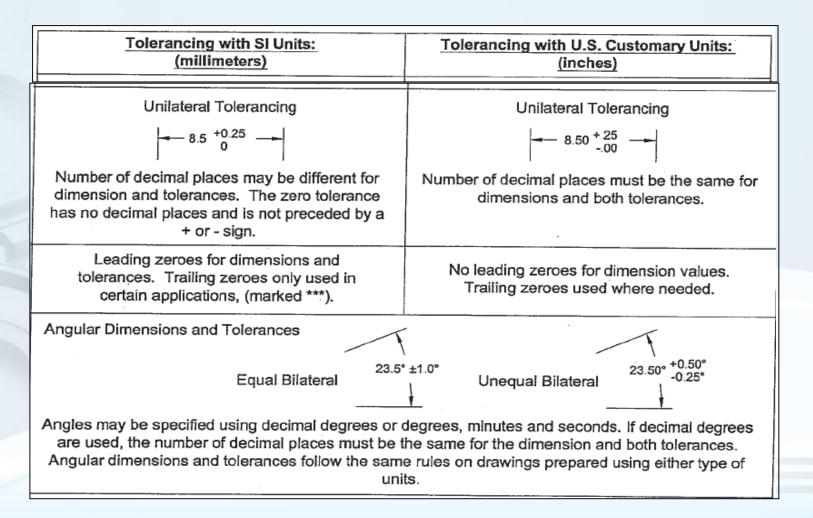
• Location tolerances must be directly specified, as they are not subsets of other tolerance types.

For example, a positional tolerance related to a datum reference frame controls orientation as a subset of position, but only positional, run out, concentricity, symmetry and profile tolerances control location.

Chapter #3

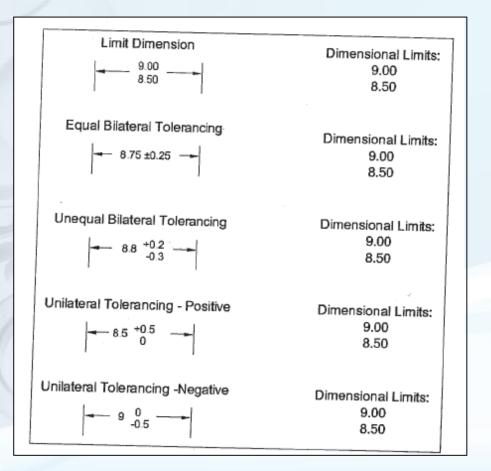
Tolerancing Format and Decimal Places

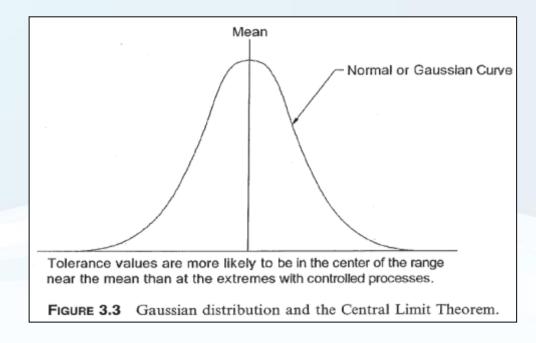
Chapter #3 Tolerancing Format and Decimal Places


Types of Tolerancing

Tolerancing with SI Units: (millimeters)	Tolerancing with U.S. Customary Units: (inches)
Limit Dimension	Limit Dimension
8.75 8.25 ***	8.75
Same number of decimal places in both limits.	Same number of decimal places in both limits.
Equal Bilateral Tolerancing	Equal Bilateral Tolerancing
→ 8.5 ±0.25 →	8.50 ±.25
Number of decimal places may be different for dimension and tolerance.	Number of decimal places must be the same for dimension and tolerance.
Unequal Bilateral Tolerancing	Unequal Bilateral Tolerancing
8.5 +0.25 -0.40 ***	8.50 + 25
Number of decimal places may be different for dimension and tolerances. Both tolerances must have the same number of decimal places.	Number of decimal places must be the same for dimension and both tolerances.

Chapter #3 Tolerancing Format and Decimal Places


Types of Tolerancing



Chapter #3 Tolerancing Format and Decimal Places

Tolerance Limit and Statistic Tolerancing

Chapter #4

Tolerancing Converting

Converting Limit Dimensions to Equal Bilateral Format

Example #4.1

Given a limit dimension,

10.00 Upper limit (metric format)9.55 Lower limit (metric format)

Total tolerance = 10 - 9.55 = 0.45

Equal bilateral tolerance value $=\frac{0.45}{2}=0.225$

Adjusted nominal value = 9.55 + 0.225 = 9.775

Conversion complete:

Equal bilateral equivalent = 9.775 ± 0.225

Converting Limit Dimensions to Equal Bilateral Format

Example #4.2

$$8.50 + .25 - .10$$

Upper limit
$$= 8.50 + .25 = 8.75$$

Lower limit = 8.50 - .10 = 8.40

Total tolerance derived from given tolerances

= .25 + .10 = .35

Equal bilateral tolerance value $=\frac{.35}{2}=.175$

$$8.40 + .175 = 8.575$$

Conversion complete :

Equal bilateral equivalent = $8.575 \pm .175$

Converting Limit Dimensions to Equal Bilateral Format

Example #4.3

$$8.50 + .25 \\ - .00$$

Conversion complete :

Equal bilateral equivalent = $8.625 \pm .125$

Example #4.4

$$\overset{8.5}{\scriptstyle -0.25}\overset{0}{\scriptstyle -0.25}$$

Conversion complete:

Equal bilateral equivalent = 8.375 ± 0.125

Mean Shift

- In converting unequal bilaterally and unilaterally toleranced dimensions to equal bilateral format, the dimension value changed to the midpoint or mean of the tolerance range.
- Where dimensions are included in the Tolerance Stack up, the mean shift is little more than a curiosity, as it has no effect on the outcome of the Tolerance Stack up.
- The mean shifts are accounted for in the Tolerance Stack up method. Using more advanced and streamlined methods where the dimensions are not included and only the tolerances are manipulated, the mean shift must be accounted for.

Chapter #4 Tolerancing Converting

Mean Shift

Example #4.1a

No Mean Shift

Example 4.1a. Mean Shift Calculation for Limit Dimensions Converted into Equal Bilateral Format

Given a limit dimension,

10.00 Upper limit (metric format)

9.55 Lower limit (metric format)

Example #4.2a

With Mean Shift

$$8.50 + .25 - .10$$

$$8.575 \pm .175$$

Converted dimension value (mean) – original dimension value (nominal) = mean shift Mean shift = 8.575 - 8.50 = .075

Chapter #4 Tolerancing Converting

Mean Shift

Example #4.3a

$$8.50 + .25 - .00$$

$$8.625 \pm .125$$

Mean shift
$$= 8.625 - 8.50 = .125$$

Example #4.4a

$$8.5 \stackrel{0}{-0.25}$$

 8.375 ± 0.125

Mean shift = 8.375 - 8.50 = -0.125

Chapter #5

Source of Variation

Chapter #5 Source of Variation

Sources of Variation

- 1. Tolerances specified on the drawing
- 2. Variation encountered in the inspection process
- 3. Variation encountered in the assembly process . O-M-N-E-X

only specified tolerances, datum feature shift and assembly shift should be included in a Tolerance Stack up, the other sources of variation arc merely included here for descriptive purposes.

Chapter #5 Source of Variation

Sources of Variation

- Manufacturing Process Limitations (Process Capability)
- Tool Wear
- Operator Error and Operator Bias
- Variations in the material from the foundry, or material formed or cut by a 5. previous process contribute to possible variation.
- Ambient Conditions
- Difference in Processing Equipment
- Difference in Process
- Poor Maintenance
- Inspection Process Variation and Shortcuts
- Assembly Process Variation

Chapter #6

Tolerance Analysis

What Is Tolerance Analysis?

Tolerance Analysis is a global term that includes two subcategories:

1. To determine the meaning of individual tolerancing specifications;

2. To determine the cumulative variation possible between two or more features.

The second part of the definition is commonly called a Tolerance Stack up.

Typical questions of Tolerance Stack up

- Will these two surfaces touch in their worst case? If so, how much will they interfere?
- ullet What is the minimum distance between the bolt head and the flange at 90 $^\circ\,$?
- What is the maximum thickness of the two parts that must fit within this groove?
- Will the pin fit within the hole?
- How large can the body of the switch be and still assemble?
- What is the worst-case largest angle possible between these surfaces?
- How do I know if the worst-case assembly will satisfy its dimensional objectives?
- Why is there interference between these existing parts? is the interference allowed by the part tolerances and the assembly process?
- If we reduce the size of the clearance holes, will the parts still assemble?
- Will the dimensioning and tolerancing scheme used on the parts allow too much variation at assembly? Should the drawings be redimensioned and retoleranced to reduce the accumulation of tolerances?
- If we chuck the part using this diameter, how much tolerance is allowed for the smaller coaxial diameter?

Steps of Tolerance Stack up

1. The distance to be studied is identified and labeled.

- 2. The positive and negative directions of the Tolerance Stack up are identified.
- 3. A Tolerance Stack up sketch is created.
- 4. The dimensions in the positive direction are added together.
- 5. The dimensions in the negative direction are added together.
- 6. The negative direction total is subtracted from the positive direction total to find the "nominal" distance.
- 7. All applicable tolerances are added together. This is the to all possible variation.
- 8. Half of the total possible variation is added to the nominal distance to find the Upper Limit for the distance.
- 9. Half of the total possible variation is subtracted from the nominal distance to find the lower limit for the distance.

A Tolerance Stack up allows the designer to

1.To Optimize the tolerances of parts and assemblies in a new design.

- 2. Balance accuracy, precision, and cost with manufacturing process capability.
- 3. Determine the part tolerances required to satisfy a final assembly condition.
- 4. Determine the allowable part tolerances if the assembly tolerance is known.
- 5. Determine if the parts will work at their worst-case condition or with the maximum statistical variation.
- 6. Determine if the specified part tolerances yield an acceptable amount of variation between assembled components.
- 7. Troubleshoot malfunctioning existing parts or assemblies.
- 8. Determine the effect changing a tolerance value will have on assembly function.
- 9. Explore design alternatives using different or modified parts.

Four Main Factors That Determine Which Dimensions And Tolerances Are Included In A Tolerance Stack Up

- The geometry of parts and assemblies that contribute to the distance being studied in the Tolerance Stack up
- The dimensioning and tolerancing schemes on the drawings of the parts and assemblies in the Tolerance Stack up
- The assembly process, how the parts are assembled
- The direction of the Tolerance Stack up and the direction of the dimensions and tolerances

Methods And Types Of Tolerance Analysis

1.Manually modeled:

Manually modeled analyses are done by hand, using pen and paper, or spreadsheet programs. Manual analyses are limited to linear (one-dimensional) variation.

2. Computer modeled.

Three-dimensional analyses are best suited to computer-modeling tools. Computer modeled analyses are performed by computer statistical simulation programs. Programs are available for one-, two-, and three- dimensional analyses.

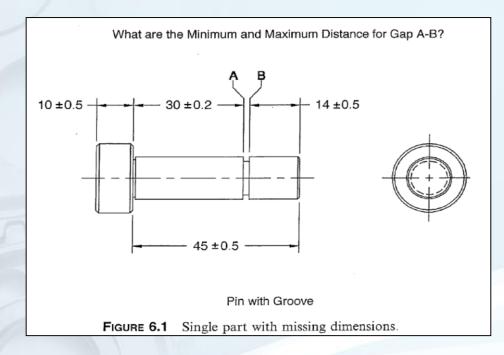
Tolerance Stack ups are performed to determine the variation of a single untoleranced dimension or distance.

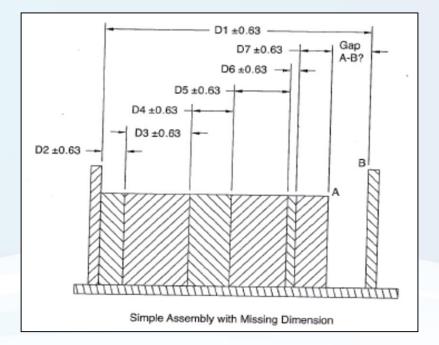
The direction of a linear Tolerance Stackup

- The direction of a linear Tolerance Stack up is always along a straight line.
- Dimensions and tolerances on surfaces at an angle to the Tolerance Stack up direction may need to be projected into the direction of the Tolerance Stack up using trigonometry.
- Dimensions and tolerances that are perpendicular to the Tolerance Stack up direction typically have no effect on the Tolerance Stack up and are usually not included in the chain of Dimensions and Tolerances.

There are two major types of Tolerance Analysis

1. worst-case (arithmetic):


Worst-case tolerance analyses represent the largest (worst-case) possible variation.


2. statistical Tolerance Analysis:

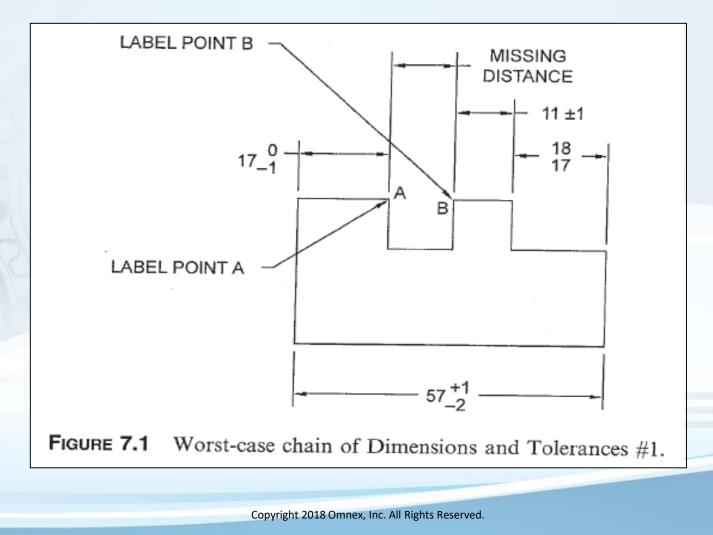
For a Tolerance Stack up with many dimensions and tolerances, statistical tolerance analyses may be more appropriate.

Examples of Tolerance Stackup

Examples of Tolerance Stack up

Chapter #7

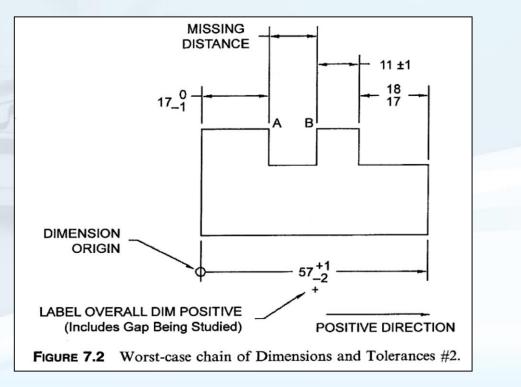
Worst Case Tolerance Stack-up

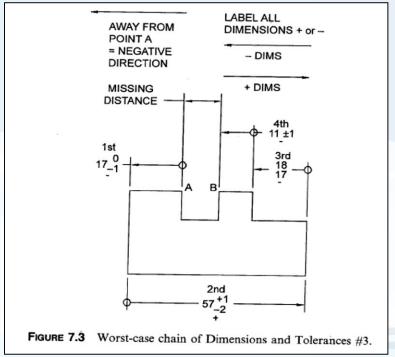


Worst-case Tolerance Stack up

WWW.OMNEX.COM

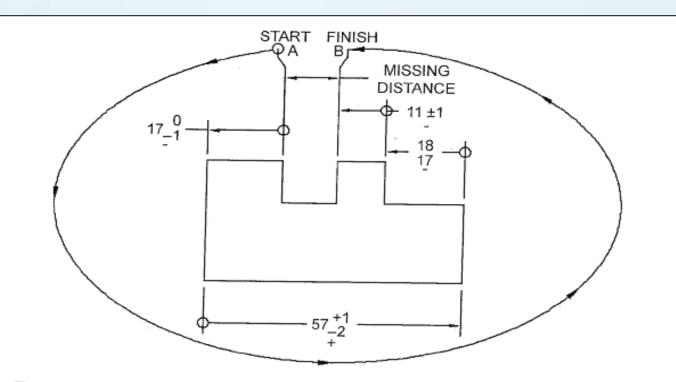
1. Select the distance (gap or interference) whose variation is to be determined Label one end of the distance A and the other end B (see Fig. 7.1).


Worst-case Tolerance Stack up


- 2. Determine if a one-, two-, or three-dimensional analysis is required.
 - a. two-dimensional analysis: resolved into one dimension using trigonometry
 - b. three-dimensional analysis: a linear Tolerance Stack up is probably not appropriate, and a computer program should be used

Worst-case Tolerance Stack up With Dimensions

- 3. Determine a positive direction and a negative direction.
 - a. dimension that spans distance A—B: positive dimension "+"
 - b. dimension that decrease distance A—B: negative dimension "-"



Worst-case Tolerance Stack up With Dimensions

4. Determine a positive direction and a negative direction.

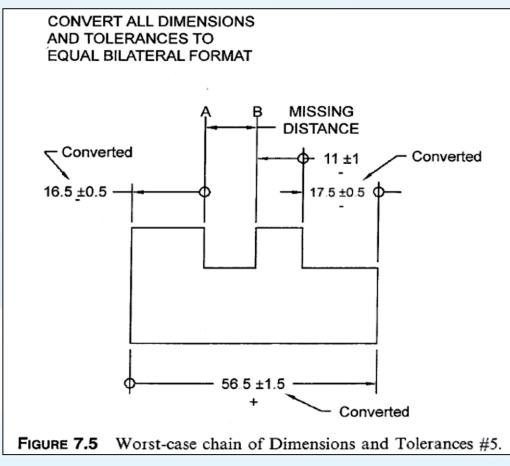
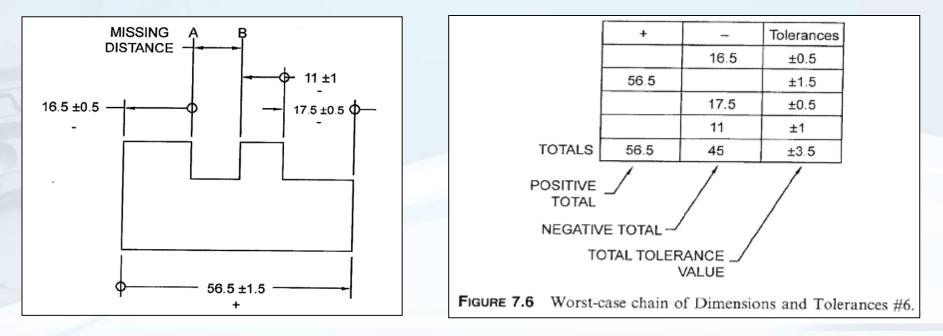
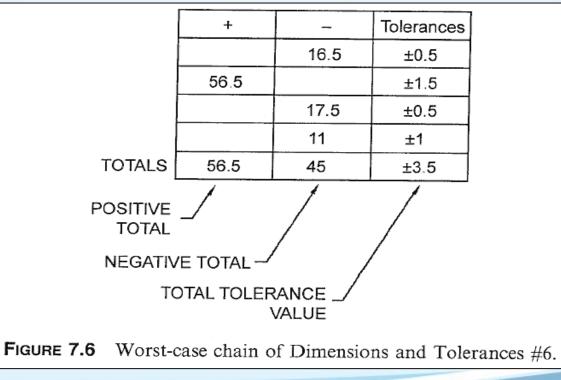


FIGURE 7.4 Worst-case chain of Dimensions and Tolerances #4. Follow the chain of dimensions and tolerances from point A to point B to make sure there are no breaks or discontinuities in the chain.

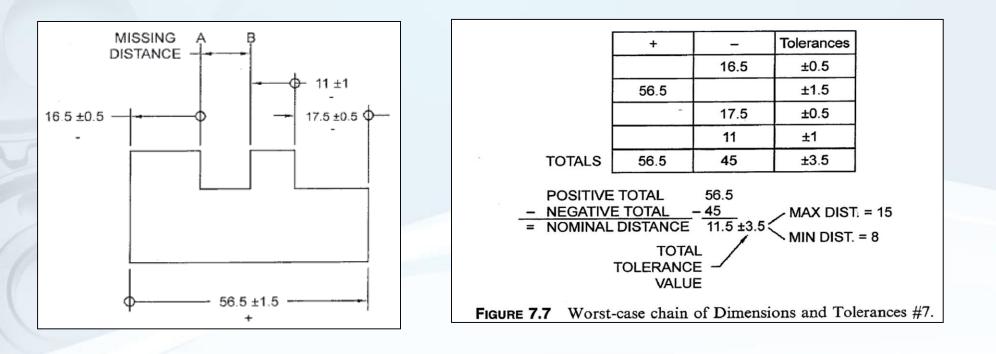
Worst-case Tolerance Stack up With Dimensions


5. Convert all dimensions and tolerances to equal bilateral format (See Fig. 7.5). Instructions for how to do this are included in Chapter 4

Worst-case Tolerance Stack up With Dimensions

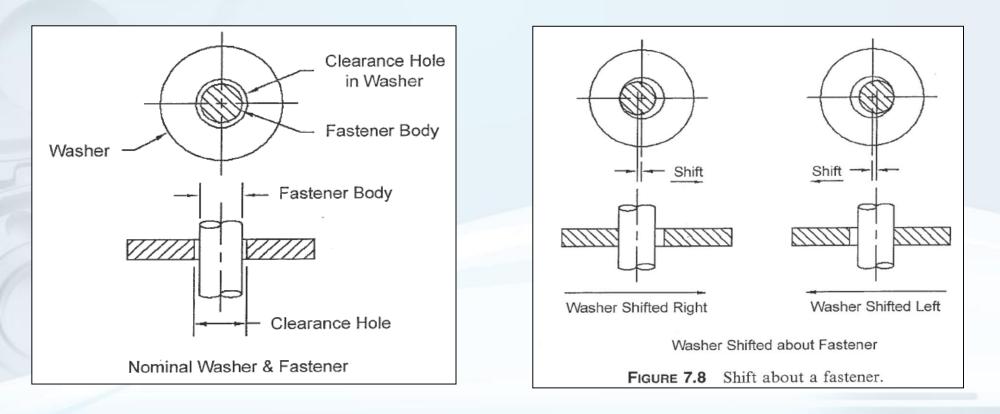

6. all the dimensions and tolerances put into a chart and totaled. Place each positive dimension value in the positive column on a separate line. Place each negative dimension value in the negative column on a separate line. (See Fig. 7.6.)

Worst-case Tolerance Stack up With Dimensions

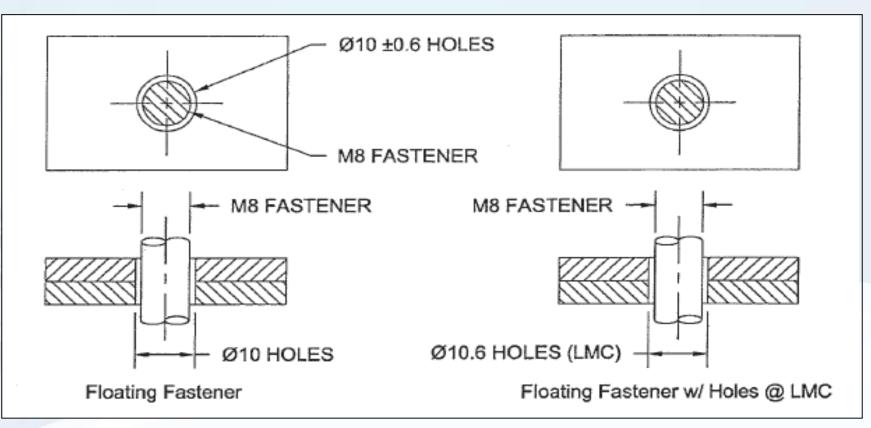

- 7. Place the tolerance value for each dimension in the tolerance column adjacent to each dimension. This value is half the total variation allowed by the tolerance
- 8. Add the entries in each column, entering the results at the bottom of the chart.

Worst-case Tolerance Stack up With Dimensions

9. Subtract the negative total from the positive total.

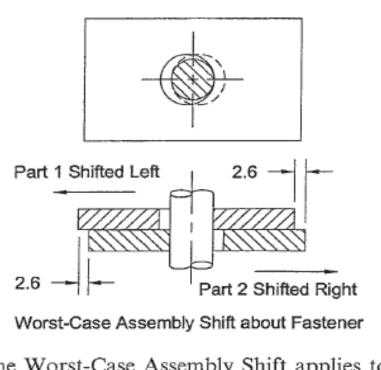

Assembly Shift

- Assembly shift represents the amount that parts can move during assembly due to the clearance between a hole and a fastener, a hole and a shaft, a width and a slot (like a key and keyway) or between any external feature within an internal feature.
- Assembly shift accounts for the freedom parts have to move from their nominal locations due to the clearance between mating internal and external features at assembly.
- Parts are routinely subjected to forces during assembly: such as gravity


Assembly Shift

Assembly shift is often overlooked until there is a problem at assembly or until a Tolerance Stack up is performed.

Assembly Shift – Floating Fastener



major diameter of the fastener must he used in the Tolerance Stack up. A common shortcut: use the nominal size, exp. 8mm for M8.

Assembly Shift – Floating Fastener

NOMINAL HOLE Ø	10
+ SIZE TOLERANCE	+0.6
LMC (LARGEST) HOLE Ø	10.6
LMC (LARGEST) HOLE Ø	10.6
- FASTENER Ø	-8
WORST-CASE ASSEMBLY SHIFT	2.6
Convert to ±: 2.6 / 2 = ±1.3	

FIGURE 7.9 Worst-case assembly shift. The Worst-Case Assembly Shift applies to each part. Each part may shift $\pm/-1.3$ mm relative to the fastener, leading to Total Assembly Shift of 2 * $\pm 1.3 = \pm 2.6$.

Assembly shift is greatest when the hole and the fastener are at their least material conditions (LMC), which are the largest hole and the smallest fastener.

Rules for Assembly Shift

- In fixed-fastener cases assembly shift is added to the Tolerance Stack up once, representing the amount the clearance holes can shift about the fastener.
- In floating-fastener cases assembly shift is added to the Tolerance Stack up twice, each line representing the amount the clearance holes in each part can shift about the fastener.

The amount each part may shift about the fastener is independent of the mating parts and must be calculated separately.

Rules for Assembly Shift

 Assembly shift is typically not calculated for fasteners within a threaded hole because fasteners are commonly assumed to self- center within the threaded holes.

there is always some clearance between internal and external threads, and assembly forces do bias the threads at assembly. A simplified approach could be to compare the difference between the pitch diameters of mating male and female threads, which is sometimes called the allowance, and use that value for the assembly shift.

Rules for Assembly Shift

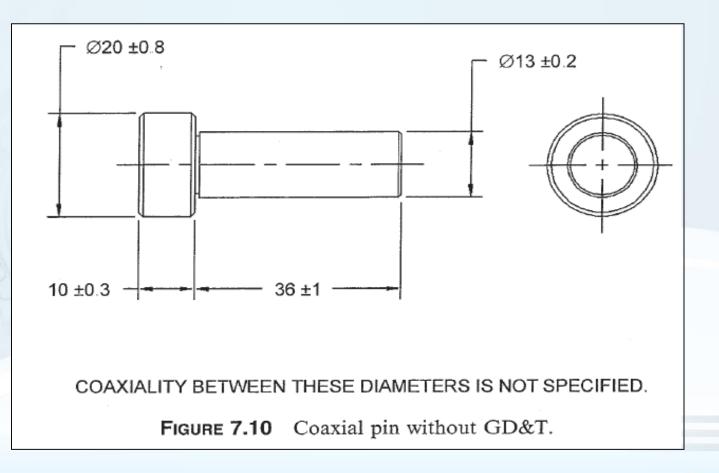
- In cases where the results of the Tolerance Stack up are very critical and the tolerances are tight, it may be necessary to calculate or estimate the amount that a threaded fastener may move within a threaded hole.
- In cases where oversized holes or slots are used to allow for adjustment at assembly, the assembly shift may be eliminated or even subtracted from the total tolerance. The assembly process will allow time for adjustment, that the assemblers understand the purpose of this extra adjustment, and the parts can be adjusted at assembly, i.e., they are not too heavy or awkward to properly be adjusted to an optimal position.

Rules for Assembly Shift

Adjustment at assembly:

The parts must be able to be adjusted at assembly if the assembly shift is to be eliminated or subtracted from the total tolerance.

Some parts may be too heavy, too large, too small, too awkward, or difficult to access or see the critical dimension to allow for proper . adjustment at assembly. In these cases the assembly shift should be included in the Tolerance Stack up. OSMASSINGERX


This text assumes that there is no adjustment at assembly and that any and all possible assembly shift will show up at final assembly.

Given that premise, each occurrence of assembly shift must be included in the Tolerance Stack up.

The Role Of Assumptions In Tolerance Stack ups

What's the coaxial relationship? - Not toleranced!

The Role Of Assumptions In Tolerance Stack ups

Framing the problem requires assumptions: idealization The Tolerance Analysis techniques presented in this text are for solving one- dimensional, linear Tolerance Stack ups.

All parts are considered in a static state.

The Tolerance Stack up allows parts to shift or rotate relative to one another during assembly, but the study is performed in a static condition.

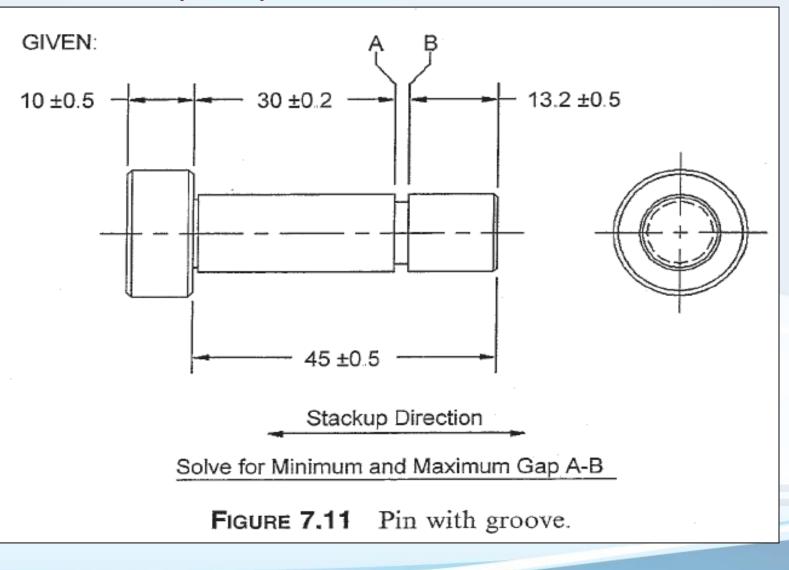
Typically a worst-case static condition, reflecting worst- case misalignment, minimum clearance, or maximum interference. If desired, statistics may be used to reduce the predicted worst- case total variation.

The Role Of Assumptions In Tolerance Stack ups

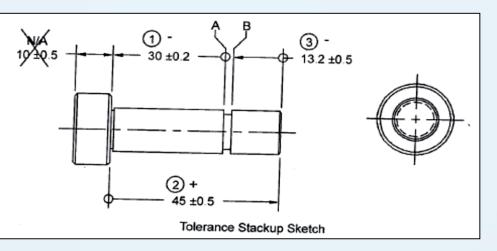
• Tolerance Stack ups are performed with these considerations:

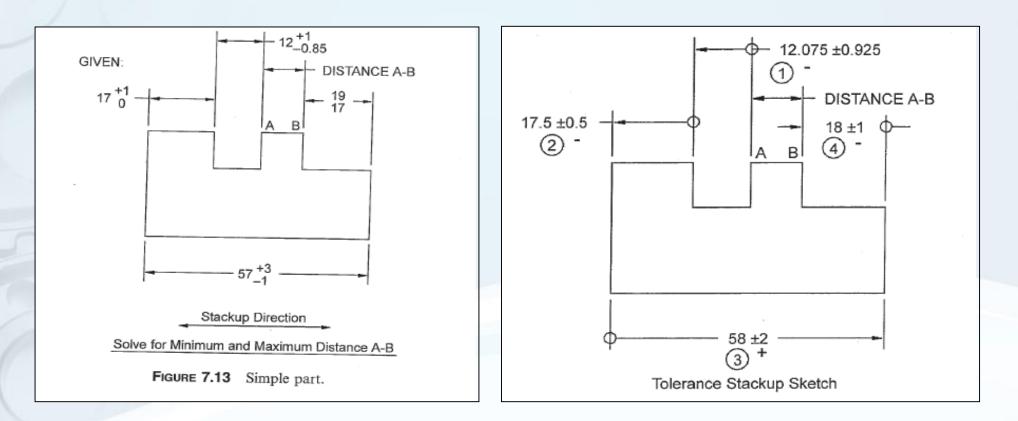
If more than one position or orientation of a part must be studied, then a Tolerance Stack up should be done for the considered feature at each important position or orientation.

Tolerance Stack ups are performed at a specified temperature. Unless specified otherwise, Tolerance Stack ups are performed at ambient temperature, the temperature at which the parts are assembled and! or inspected.


If a study is needed to account for differential thermal expansion, then the study should be done at the operating temperature. It may be common in some industries to perform Tolerance Stack ups at a number of temperatures to account for various stages of cooling or heating during operation.

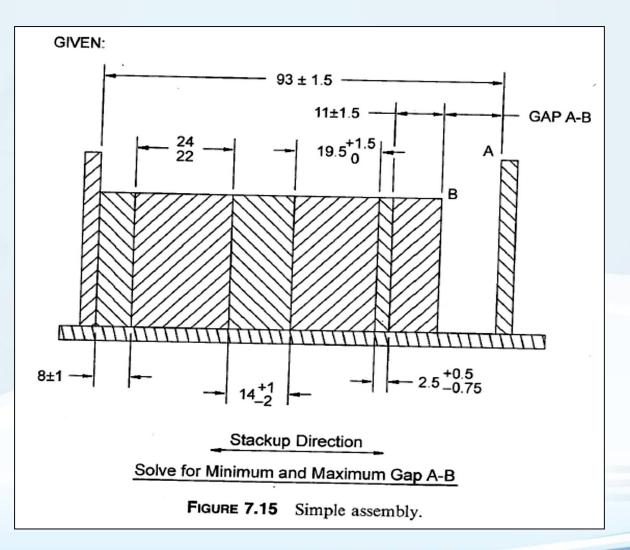
The Role Of Assumptions In Tolerance Stack ups

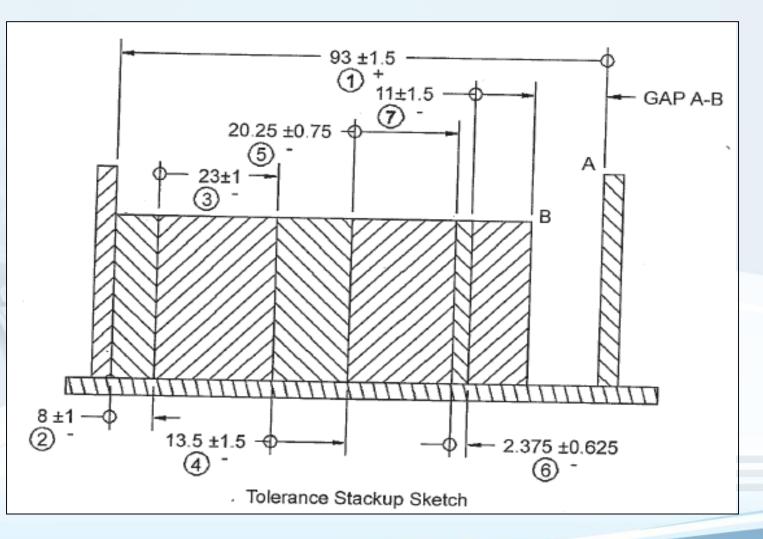

- Here parts are assembled at one temperature and operate at a different temperature, it is important to study both conditions, as the parts must be assembled before they can operate.
- Tolerance Stack ups are most accurate when done on parts and assemblies at the temperature at which they were inspected
- Many more assumptions are required for Tolerance Stack ups done at reduced or elevated temperatures
- Catalog parts: it is very common to have no tolerances available on a catalog data sheet. More commonly a detail is included showing the required mating part geometry, typically inadequate from a Tolerance Analysis, such as bearing, bolt, bushing, etc.

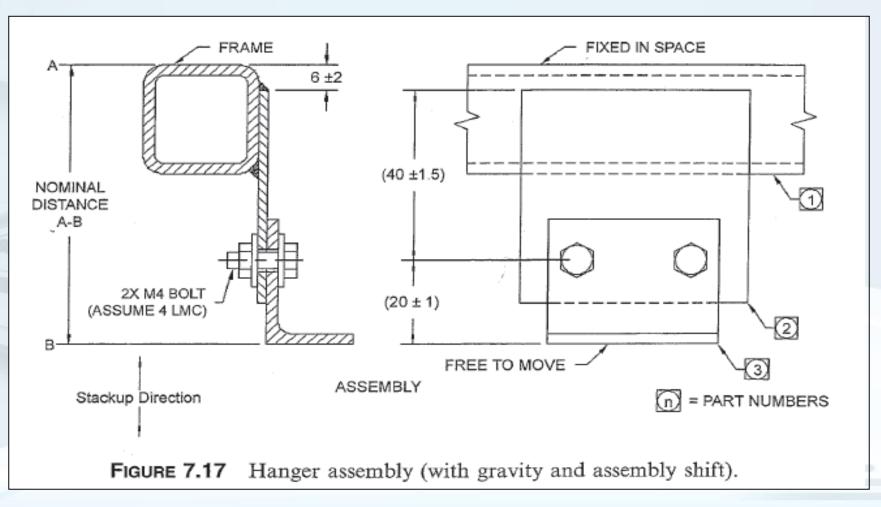


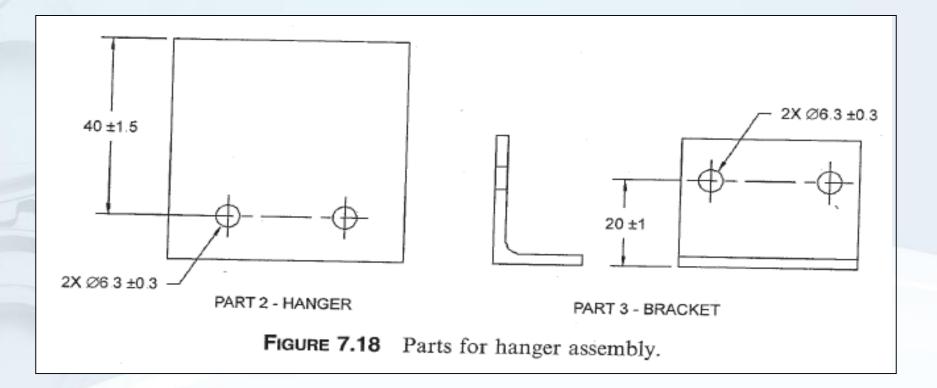
Copyright 2018 Omnex, Inc. All Rights Reserved.

+	-	Tolerances	Description		
	30	±0.2	GROOVE - HEAD		
45		±0.5	OVERALL LENGTH		
	13.2	±0.5	TIP - GROOVE		
45 43.2 ±1.2 Totals					
Positive Total 45 <u>- Negative Total</u> -43.2 = Nominal Gap 1.8 +/- 1.2 MAX GAP = 3 MIN GAP = 0.6 Tolerance Value					
Stackup Direction					
Solve for Minimum and Maximum Gap A-B					
FIGURE 7.12 Pin with groove solved.					

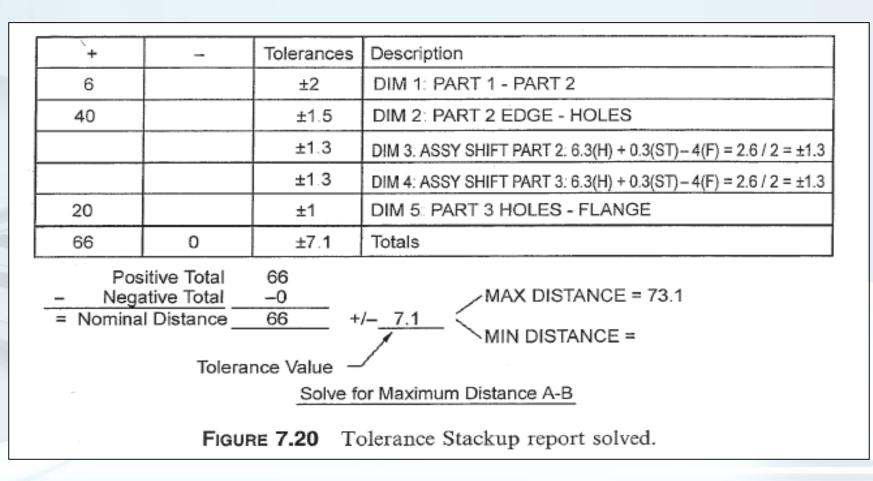


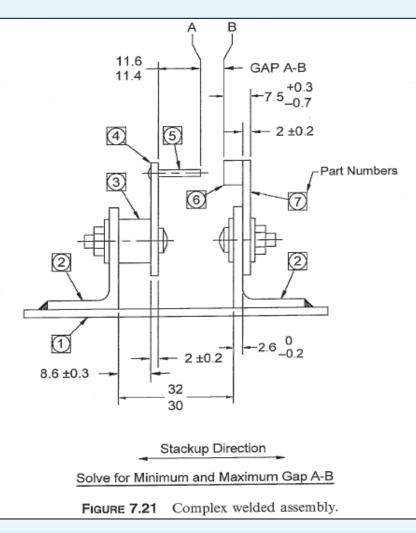

+	_	Tolerances	Description		
	12.075	±0.925	DIM 1		
	17.5	±0.5	DIM 2		
58		±2	DIM 3		
	18	±1	DIM 4		
58	47.575	±4.425	Totals		
Positive Total 58 <u>- Negative Total</u> -47.575 = Nominal Distance 10.425 +/- 4.425 Tolerance Value MIN DISTANCE = 6					
Stackup Direction					
Solve for Minimum and Maximum Distance A-B					
	Figu	RE 7.14 Sir	nple part solved.		

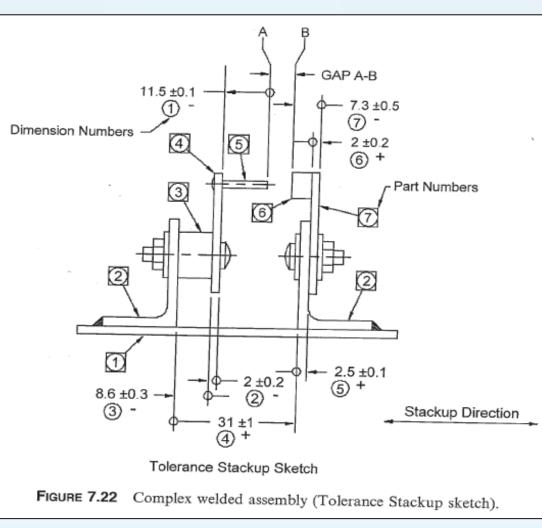

Copyright 2018 Omnex, Inc. All Rights Reserved.



+	-	Tolerances	Description		
93		±1.5	DIM 1		
	8	±1	DIM 2		
	23	±1	DIM 3		
	13.5	±1.5	DIM 4		
	20.25	±0.75	DIM 5		
	2.375	±0.625	DIM 6		
	11	±1.5	DIM 7		
93	78.125	±7.875	Totals		
Positive Total 93 <u>- Negative Total</u> -78.125 = Nominal Gap 14.875 +/- 7.875 Tolerance Value -78.125 MIN GAP = 22.75					
Stackup Direction					
Solve for Minimum and Maximum Gap A-B					
FIGURE 7.16 Simple assembly solved.					

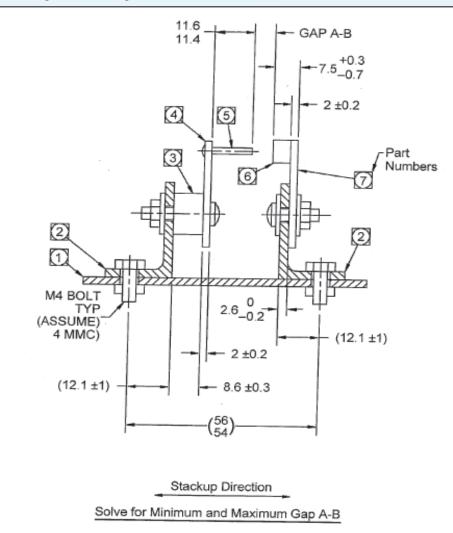
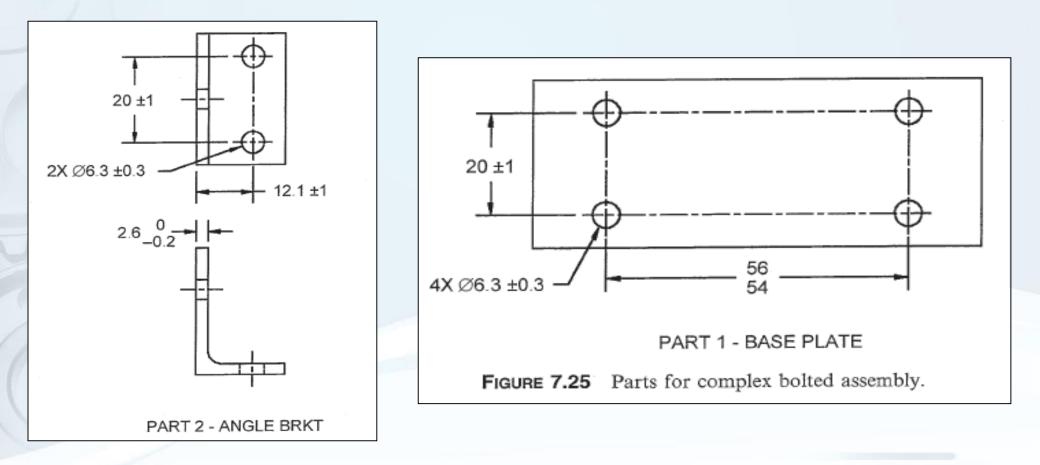


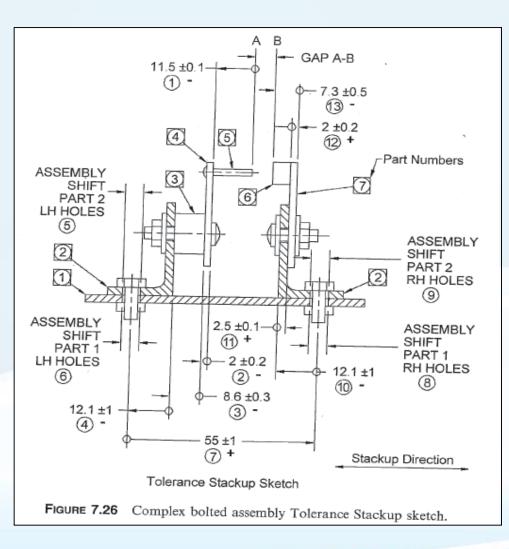




	Worst-Case Tolerance Stackup							
	Dim	Part						
	No	No	+		+/	Description		
	1	5		11.5	+/- 0.1	Pin Length		
	2	4		2	+/- 0.2	LH Plate Thickness		
	3	3		8.6	+/- 0.3	Standoff Thickness		
	4	2	31		+/- 1	Flange to Flange Dist Between LH & RH Item 2		
	5	2	2.5		+/- 0.1	RH Angle Brkt Web Thickness		
	6	7	2		+/- 0.2	RH Plate Thickness		
	7	6&7		7.3	+/- 0.5	Thickness of RH Plate and Boss		
	~		35.5	29.4	+/- 2.4	Totals		
100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100		- Negativ		35.5 - 29.4	ł	Tolerance		
	= Nominal Gap 6.1 +/- 2.4 Tolerance							
1 N.1	Max Gap 8.5							
1	Min Gap 3.7 Clearance							
	FIGURE 7.23 Tolerance Stackup report solved.							

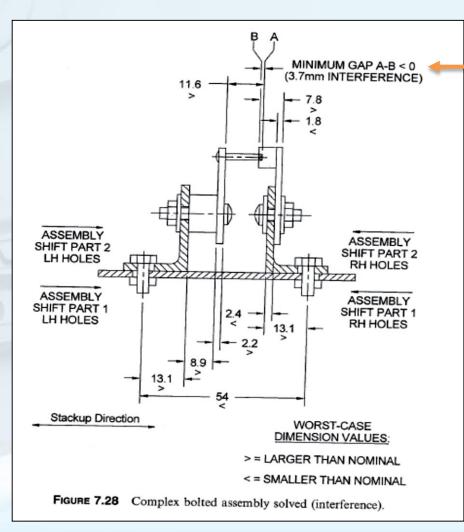
Worst-case Tolerance Stack up Examples #7.6


FIGURE 7.24 Complex bolted assembly.

OMNEX WWW.OMNEX.COM

Copyright 2018 Omnex, Inc. All Rights Reserved.



Wor	Worst-Case Tolerance Stackup						
Din	1 Part						
No	No	+	-	+/_	Description		
1	5		11.5	+/-0.1	Pin Length		
2	4		2	+/-0.2	LH Plate Thickness		
3	3		8.6	+/-0.3	Standoff Thickness		
4	2		12.1	+/1	CL Hole - Edge on LH Angle Brkt		
5	2			+/-1.3	Assy Shift in LH Angle Brkt Holes @ LMC: 6.6-4 = 2.6 / 2 = +/-1.3		
6	1			+/-1.3	Assy Shift in Base Plate LH Holes @ LMC: 6.6-4 = 2.6 / 2 = +/-1.3		
7	1	55		+/-1	CL - CL Holes Dim on Base Plate		
8	1			+/-1.3	Assy Shift in Base Plate RH Holes @ LMC: 6.6-4 = 2.6 / 2 = +/-1.3		
9	2			+/-1.3	Assy Shift in RH Angle Brkt Holes @ LMC: 6.6-4 = 2.6 / 2 = +/-1.3		
10	2		12.1	+/ 1	CL Hole - Edge on RH Angle Brkt		
11	2	2.5		+/-0.1	RH Angle Brkt Flange Thickness		
12	7	2		+/-0.2	RH Plate Thickness		
13	6&7		7.3	+/-0.5	Thickness of RH Plate & Boss		
	Totals	59.5	53.6	+/-9.6	Worst Case Tolerance		
	Positive Total 59.5 Negative Total –53.6 Nominal Gap 5.9 +/– 9.6						
	Max Gap 15.5 Clearance Min Gap -3.7 Inteference!!!						
	FIGURE 7.27 Complex bolted assembly - spreadsheet with solution.						

Worst-case Tolerance Stack up Examples #7.6

assembly by bolting: More variation than welding assembly -3.7

Tolerance Stack ups And Assemblies Moving Across an Interface from One Part to the Other in a Tolerance Stack up

Two common types of interfaces encountered in Tolerance Stack ups:

1. Mating planar surfaces:

traversing a planar interface (two nominally flat mating surfaces)

2. clearance holes in mating parts or clearance holes and tapped holes that share common fasteners

a. traversing a feature-of-size interface, such as coaxial clearance holes in mating parts, or coaxial clearance and threaded holes, with common fasteners

The fixed- and floating-fastener situations described in Chapter 18 are examples of a feature-of-size interface.

Tolerance Stack ups And Assemblies

• The guidelines are based on the following assumptions:

the mating features in the interface are part of the Tolerance Stack up

the dimensions and tolerances contribute to the Tolerance Stack up

they are not directly part of the distance being studied.

the dimension and tolerance values are in the same direction as the Tolerance Stack up direction.

the dimensions and tolerances arc in equal bilateral format. If they are not, they must be converted to equal bilateral format.

Tolerance Stack ups And Assemblies

• **Planar Interface:** Traversing a Planar Interface from One Part to Another in the Tolerance Stack up

For \pm dimensions and tolerances:

The dimension to the interfacial surface on the first part is included in the Tolerance Stack up.

The \pm location tolerance associated with the dimension is included in the Tolerance Stack up.

Now the Tolerance Stack up moves from the interfacial surface on the first part to the mating surface on the second part.

Steps 1.a and 1.b are repeated in reverse order for the second part.

Tolerance Stack ups And Assemblies

• For GD&T: GD&T

a. If the planar feature is a referenced datum feature:

b. The basic dimension to the datum feature is included in the Tolerance Stack up.

c. If there is a profile tolerance specified for the datum feature, lines for profile tolerance and datum feature shift are added to the Tolerance Stack up report.

Tolerance Stack ups And Assemblies

- The values for profile and datum feature shift are entered if the location of the datum feature contributes to the Tolerance Stack up. (The value for datum feature shift may be zero.)
- The values for profile and datum feature shift are set to zero and the lines are marked "N/A" if the location of the datum feature does not contribute to the Tolerance Stack up.
- If the location of the surface does not affect the Tolerance Stack up, but the profile tolerance controls the form of the feature, the profile tolerance may be included in the Tolerance Stack up as described in Chapter 20.

Tolerance Stack ups And Assemblies

- If the datum feature has a form tolerance, the form tolerance is typically not included in the chain of Dimensions and Tolerances. However, the form tolerance may be included in the Tolerance Stack up per the guidance in Chapter 20 if desired.
- Special cases may require using an orientation tolerance or a lower segment composite profile tolerance in the Tolerance Stack up. These are uncommon applications and must be carefully addressed on a case-by-case basis. For more information see Chapter 9.
- Now the Tolerance Stack up moves from the interfacial surface on the first part to the mating surface on the second part.
- Steps 2.a.i—2.a.iv are repeated in reverse order for the second part.

Tolerance Stack ups And Assemblies

If the planar feature is not a datum feature:

The basic dimension from the datum reference frame related to the feature is included in the Tolerance Stack up.

Lines for profile and datum feature shift are added to the Tolerance Stack up report. The values for profile and datum feature shift are entered. (The value for datum feature shift may be zero.) (See Chapters 9, 13, and 14.)

Tolerance Stack ups And Assemblies

- Special cases may require using an orientation tolerance or a lower segment composite profile tolerance in the Tolerance Stack up. These are uncommon applications and must be carefully addressed on a case-by-case basis. For more information see Chapter 9.
- Now the Tolerance Stack up moves from the interfacial surface on the first part to the mating surface on the second part.
- Steps 2.b.i--2.b.iii are repeated in reverse order for the second part.

Tolerance Stack ups And Assemblies

Feature-of-Size Interface:

Traversing a Feature-of-Size Interface (Mating Clearance and/or Threaded Holes with Common Fasteners) from One Part to Another in the Tolerance Stack up

For \pm dimensions and tolerances:

The dimension to the Feature of Size on the first part is included in the chain of Dimensions and Tolerances. (This is the dimension in the direction of the Tolerance Stack up where rectangular or polar coordinate dimensioning is used.)

The \pm location tolerance associated with the dimension is included in the Tolerance Stack up.

Tolerance Stack ups And Assemblies

- If the features are clearance holes, assembly shift is calculated and added to the chain of Dimensions and Tolerances for the holes in the first part. If the features are threaded or press-fit holes assembly shift is not added.
- Now the Tolerance Stack up moves from the interfacial feature on the first part to the mating feature on the second part.
- Steps 1.a—1.c are repeated in reverse order for the second part.

Tolerance Stack ups And Assemblies

• Feature-of-Size Interface:

GD&T: GD&T

If the feature of size (hole, pin, etc.) is a referenced datum feature

The basic dimension to the datum feature is included in the Tolerance Stack up.

If a positional or orientation tolerance is specified for the datum feature, lines for the positional/orientation tolerance, bonus tolerance, and datum feature shift are added to the Tolerance Stack up report.

Tolerance Stack ups And Assemblies

• Feature-of-Size Interface:

GD&T:

The values for position/orientation, bonus tolerance, and datum feature shift are entered if the location of the datum feature contributes to the Tolerance Stack up. (The values for bonus tolerance and datum feature shift may be zero.) (See Chapter 9.)

The values for position/orientation, bonus tolerance, and datum feature shift are set to zero and the lines are marked "N/A" if the location of the datum feature does not contribute to the Tolerance Stack up. (This is common where the datum feature of size is the primary or secondary datum feature in a referenced feature control frame.) (See Chapters 9, 13, and 14.)

Tolerance Stack ups And Assemblies

• Feature-of-Size Interface:

GD&T:

Assembly shift is calculated and added to the chain of Dimensions and Tolerances for the datum feature of size in the first part. Assembly shift is typically not added if the datum features of size arc threaded holes.

Now the Tolerance Stack up moves from the datum feature on the first part to the datum feature on the second part.

Steps 2.a.i—2.a.iii arc repeated in reverse order for the second part.

Tolerance Stack ups And Assemblies

• Feature-of-Size Interface:

GD&T:

If the feature of size (hole, pin, etc.) is a not a datum feature:

The basic dimension from the datum reference frame related to the feature is included in the Tolerance Stack up.

Lines for positional tolerance, bonus tolerance, and datum feature shift are added to the Tolerance Stack up report. The values for position, bonus tolerance, and datum feature shift are entered. (The values for bonus tolerance and datum feature shift may be zero.) (See Chapters 9, 13, and 14.)

Tolerance Stack ups And Assemblies

Feature-of-Size Interface:

GD&T:

If the feature of size (hole, pin, etc.) is a not a datum feature:

Assembly shift is calculated and added to the chain of Dimensions and Tolerances for the holes in the first part. Assembly shift is typically not added if the features of size are threaded holes.

Now the Tolerance Stack up moves from the interfacial feature on the first part to the mating feature on the second part.

Steps 2.b. 1-2..b.iii are repeated in reverse order for the second part.

Chapter #8

Statistic Tolerance Stack-up

Statistical Tolerance Stack ups

- Statistical Tolerance Stack ups determine the probable or likely maximum variation possible for a selected dimension.
- realistically assumes that it is highly improbable that all the dimensions in the Tolerance Stack up will be at their worst-case low limit or high limit at the same time.
- The sum of the dimensions and tolerances will likely approximate a normal distribution.
- Most or all of the dimensions will likely be closer to their nominal value than either extreme. Also, some of the dimensions that the worst-case model required to be at their upper limit may actually be closer to their lower limit, and vice versa. The combination of these factors leads to the idea of a statistical Tolerance Stack up.

Statistical Tolerance Stack ups

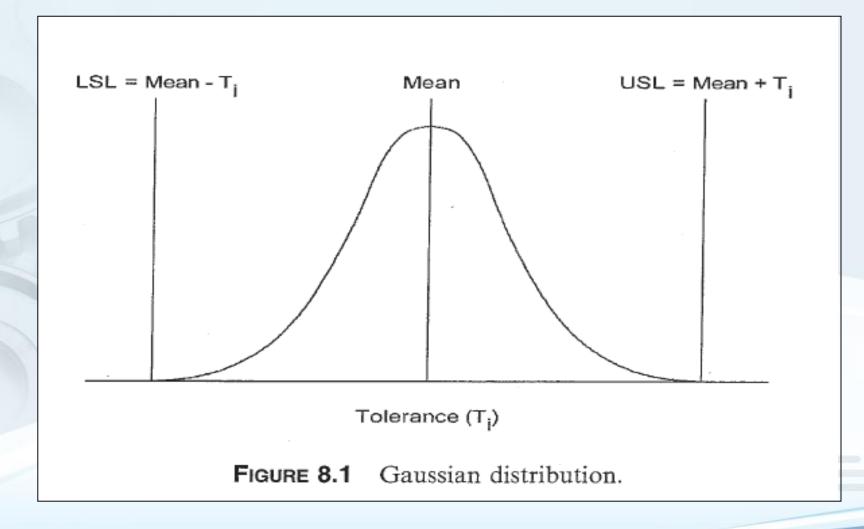
- when it is appropriate to use a statistical versus a worst-case Tolerance Stack up.
- depends on a number of factors, including the number of tolerances in the Tolerance Stack up, the quantity of parts to be manufactured, manufacturing process controls, design sensitivity, past company practices, and willingness to accept risk, to name a few.
- A simple rule of thumb is as the number of tolerances in a Tolerance Stack up increases, the benefits and validity of using a statistical analysis increases.

Statistical Tolerance Stack ups Assumption

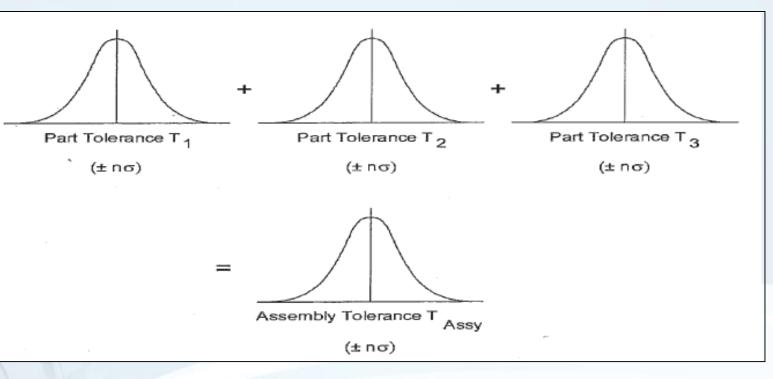
Statistical tolerance analyses are based on several conditions being in place.
 These include::

The manufacturing processes for the parts must be controlled processes. This requires, among other things, that manufacturing nominal is the same as design nominal.

Processes must be centered and output normal or gaussian distributions (see Fig. 8.1). This presents a problem where unequal bilateral or unilateral tolerances have been specified.


Parts must be randomly selected for assembly.

Statistical Tolerance Stack ups Assumption


- The design must be able to tolerate the possibility that some small percentage of the as-produced parts or assemblies exceed the calculated statistical result.
- The enterprise must be willing to tolerate the possibility that some parts or assemblies will be rejected due to exceeding the calculated statistical result.

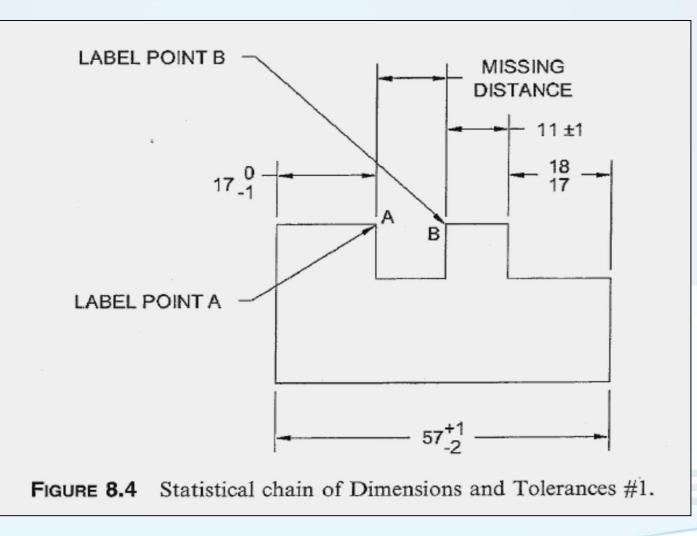
Statistical Tolerance Analyses

RSS Tolerance =
$$\sqrt{T_1^2 + T_2^2 + T_3^2} - T_n^2$$

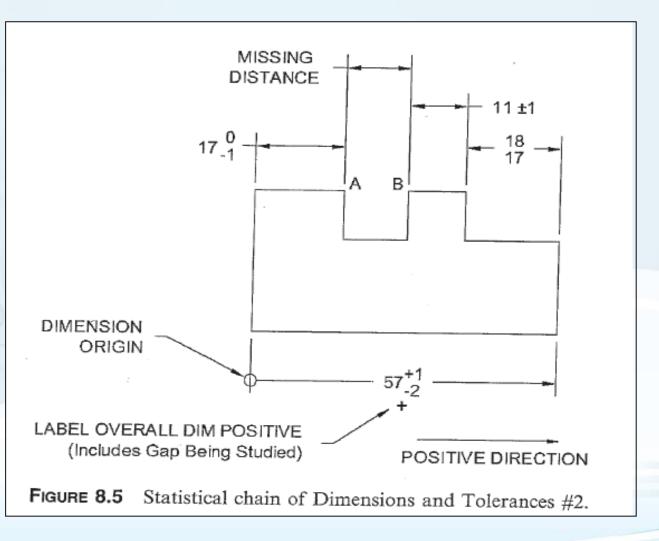
FIGURE 8.2 Root sum formula for statistical Tolerancing. Where: $T_n =$ Tolerances in the Tolerance Stackup.

Statistical Tolerance Analyses

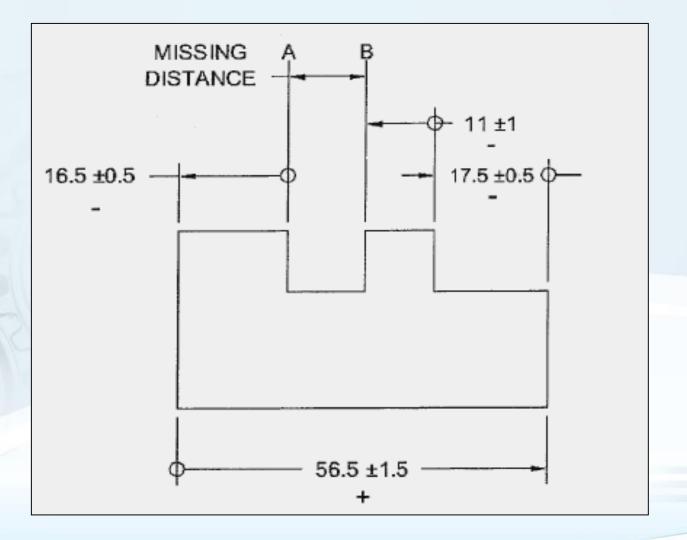
Two statistical methods for Tolerance Analysis:

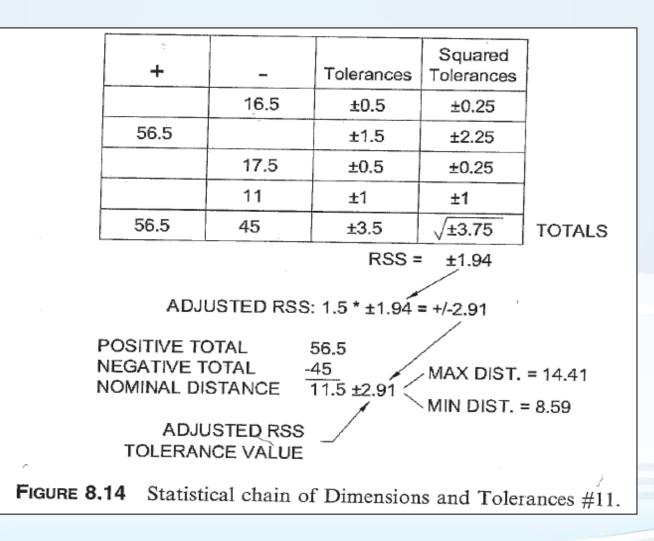

Root-sum-square (RSS)

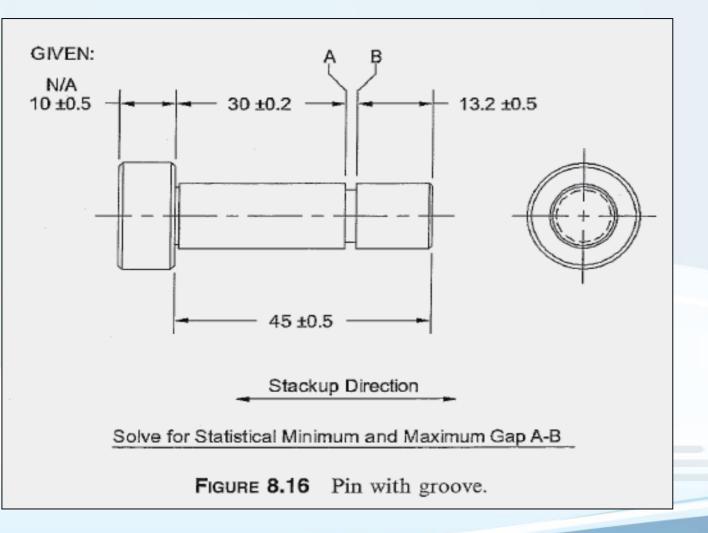
Root-sum-square is commonly used on manually modeled and spreadsheet-based statistical Tolerance Stack ups.


Monte Carlo simulations

Monte Carlo simulation is typically used with computer-based Tolerance Analysis simulation software. Simply put, Monte Carlo simulations take all the variables in a Tolerance Stack up, give them a random value within their range, derive a result, iterate this process thousands of times, and average the result.



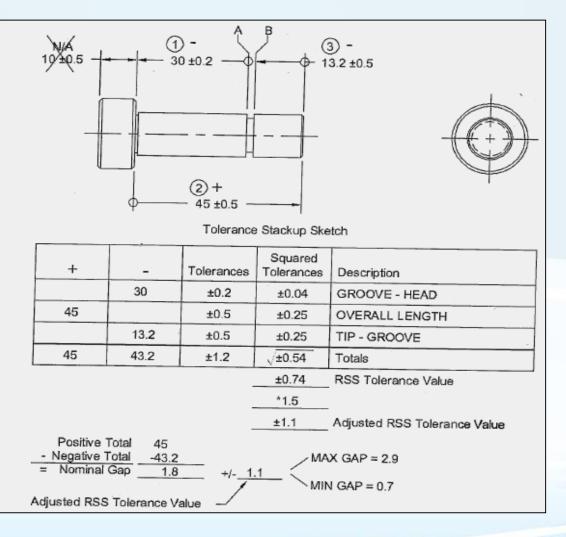


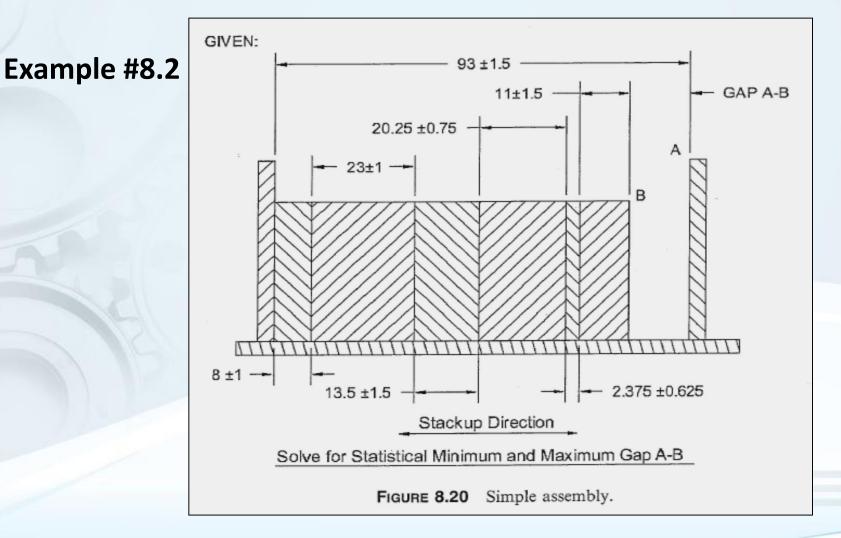


gram: Electronics Packaging Program AV-11							Stack Information			
roduct _	Part Number Rev Description 12245676-001 A Ground Plate Enclosure Assembly: Option 1 w 8 Holes as Datum Feature 8							_	Stack No. Date:	AV-11-010a 07/04/02
									Revision	
	-			t Touch Walls of Enclouse Plate Contacts Enclosure Walls						Along Plane of Ground Plate (Y Axis) BR Flocher
Description of									Percent	
Component / Assy	Part Number	Rev	ttem	Description		+ Dims	- Dims	Tol		Dim / Tol Source & Calcs
Enclosure	12345678-002	A	1	Profile: Edge Along Pt A				+- 0.5000	19%	Profile 1, A, Bm
			2	Datum Feature Shift (DFB@UMC-D	FSp)/2			+/- 0.2900	11%	= (3.422 - (3.242 - 0.4)) / 2 (Shift within Minor Dia)
			3	Dim: Edge of Enclosure - Datum B	8.5000		*- 0.0000	D%	8.5 Basic on Dwg	
				Position: DF _B M4 Holes			+/- 0.2080	8%	Position dia 0.4 @ MMC A	
				Bonus Tolerance			+/- 0.0000	0%	NA - Threads	
			6	Datum Feature Shift (DFaguer - D			+/- 0.0000	B%	NA - DFA not a Feature of Size	
								+/- 0.6650	25%	= ((5+0.15)-3.82)/2
Ground Plate	12345678-004	A		Position: DFp Dia 5+/-0.1 Holes				+/- 0.2250	9%	Position dia 0.45@ MMC A
				Bonus Tolerance			+/- 0.1000	4%	= (0.1+0.1)/2	
				Datum Feature Shift: (DFeeting - D	FS ₉)/2			+/- 0.0000	0%	N/A - DF _A not a Feature of Size
		-		Dim: Datum B - Edge of Ground Pla			6.0000	+/- 0.0000	0%	6 Basic on Dwg
				Profile: Edge Along Pt 8				+/- 0.5000	19%	Profile 1, A, Bm
			13	Datum Feature Shift: (DFeature - D	FS _P)/2			+/- 0.1500	6%	= ((6 + 0.15) - (5 - 0.15)) / 2
				RESULTS:	Arithmetic Stack (Tol +/- 2.6300 +/- 1.0721	Min -0.1300 1.4279	
					Adjusted Statistic	al: 1.6*RSS				4.1082
	- Used min and n	nak scr	ew thre	Dia: 4 / 3.82 - M4 Tapped Hole D ad minor dia in Datum Feature Shift a in Assembly Shift Calculations on	Calculations on line 2.	12			416-14-0	-
Assumptions:		s are s	elf cent	ering. Do not include bonus toleran	ce on line 5.					
Suggested Action:		e two i	noles as	locators instead of all eight. See S	tack Opt- 2.					
	- may want to to	8 1040 1	1005 80	iocators insteau or air eight. See S	аск орг- 2.					

Statistical Tolerance Analyses

Example #8.1



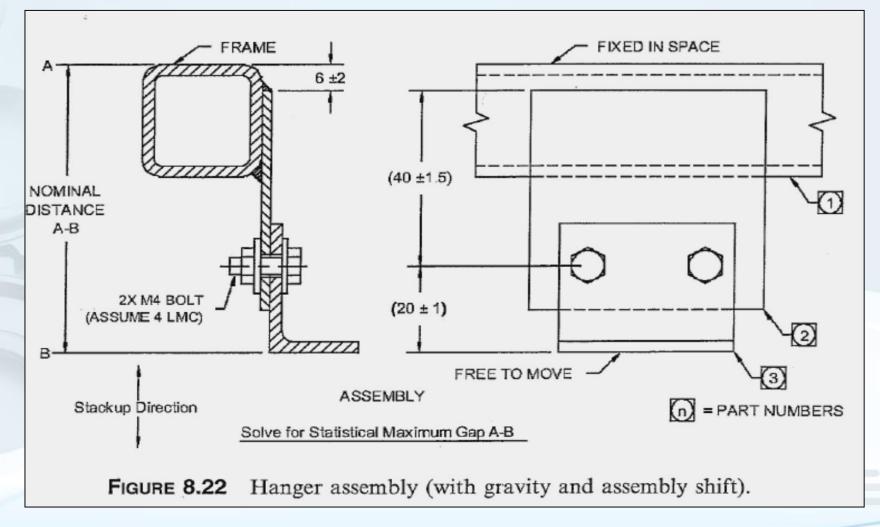

Copyright 2018 Omnex, Inc. All Rights Reserved.

Statistical Tolerance Analyses

Example #8.1

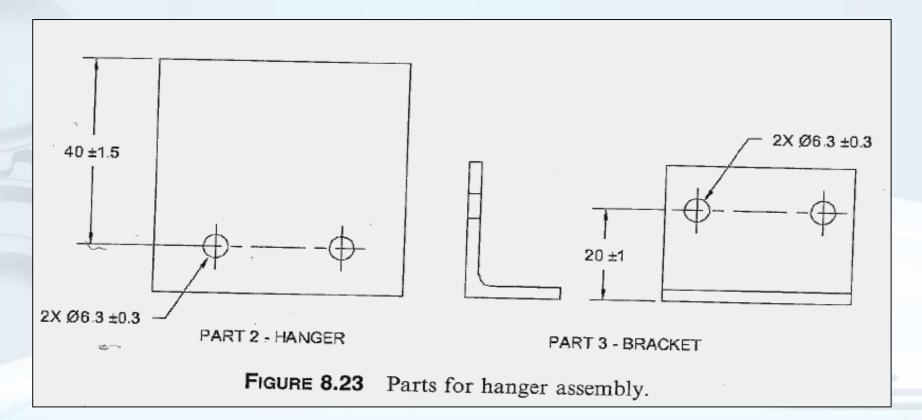
Statistical Tolerance Analyses

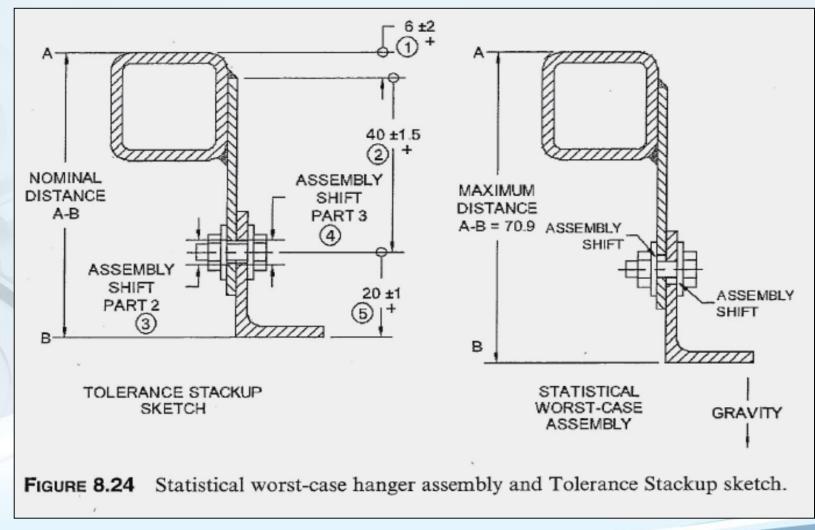
Example #8.2


		(Olei	ance Stacku	o Sketch	
+	-	Tolerances	Squared Tolerances	Description	
93		±1.5	±2.25	DIM 1	
	8	±1	±1	DIM 2	
	23	±1	±1	DIM 3	
	13.5	±1.5	±2.25	DIM 4	
	20.25	±0.75	±0.5625	DIM 5	
	2.375	±0.625	±0.391	DIM 6	
	11	±1.5	±2.25	DIM 7	
93	78.125	±7.875	ñ9.70	Totals	
			±3.115	RSS Tolerance Value	
	*1.5				
	Adjusted RSS Tolerance Value				
- Ne	ositive Total gative Total lominal Gap	93 -78.125 14.875	+/	MAX GAP = 19.545 MIN GAP = 10.205	
Adjust	ed RSS Tolera	ance Value -			
	~	Stack	up Directi	on	
So	lve for Sta	tistical Min	imum and	Maximum Gap A-B	
	FIGURE 8.2			olved statistically.	

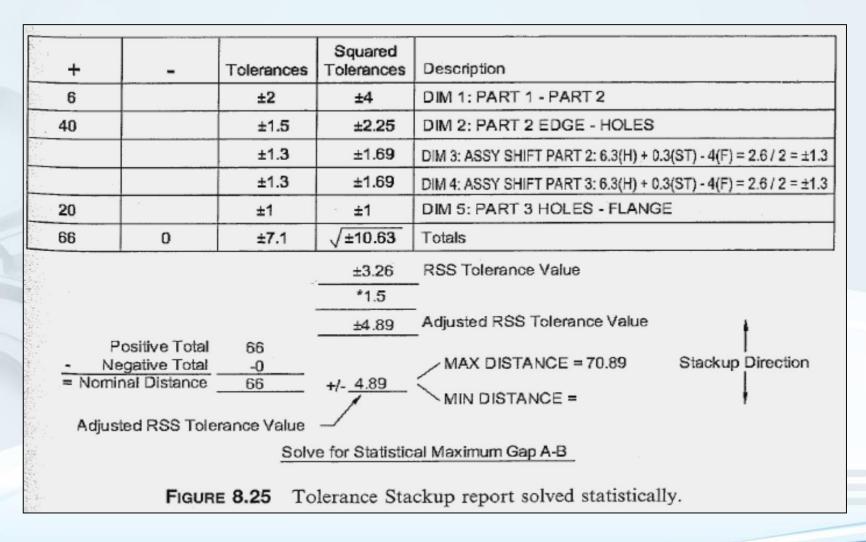
Tolerance Stockup Cluste

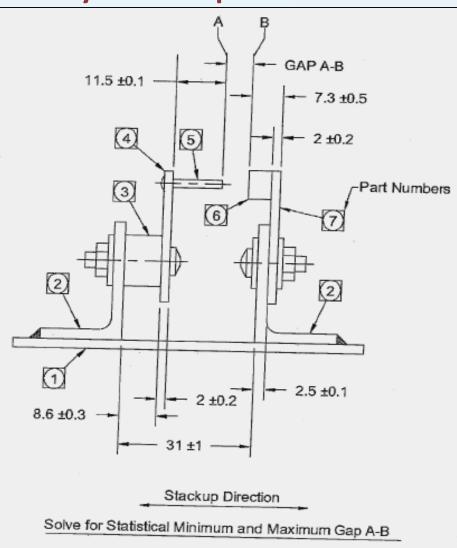
Statistical Tolerance Analyses

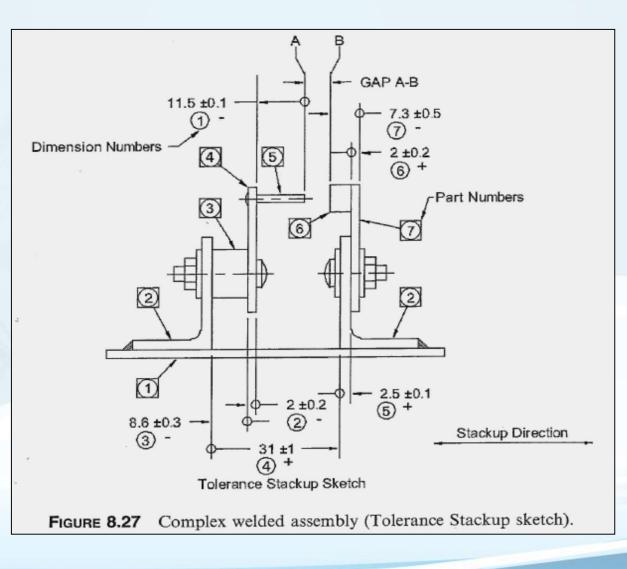

Example #8.3

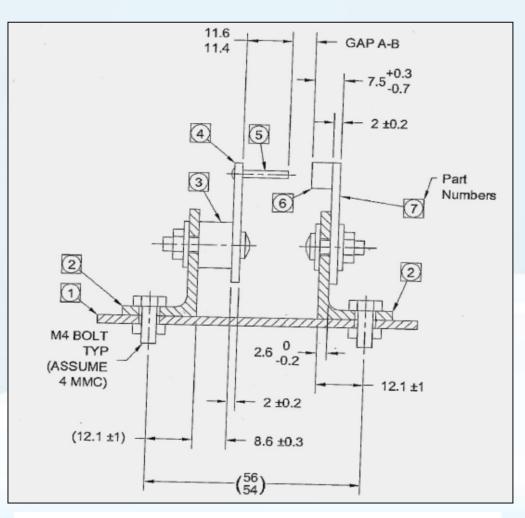


Statistical Tolerance Analyses

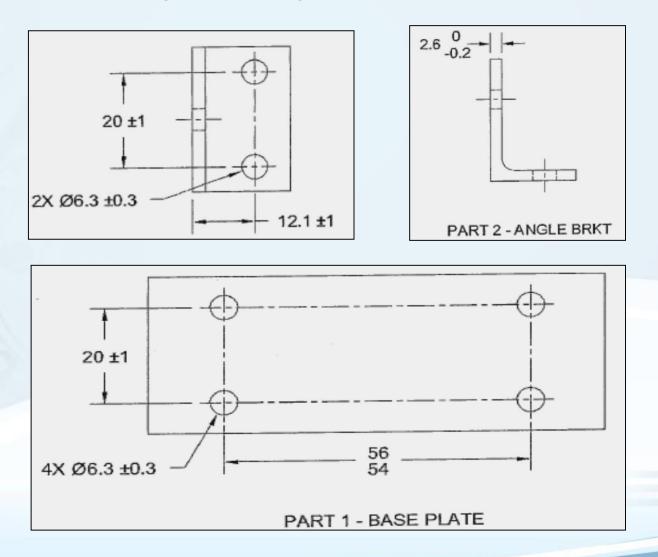

Example #8.3







Dim	Part				Squared	
No	No	+	-	+/-	Tolerances Description	
1	5		11.5	± 0.1	± 0.01	Pin Length
2	4		2	± 0.2	± 0.04	LH Plate Thickness
3	3		8.6	± 0.3	± 0.09	Standoff Thickness
4	2	31		± 1	± 1	Flange to Flange Dist Between LH & RH Item 2
5	2	2.5		± 0.1	± 0.01	RH Angle Brkt Web Thickness
6	7	2		± 0.2	± 0.04	RH Plate Thickness
7	6&7		7.3	± 0.5	± 0.25	Thickness of RH Plate and Boss
Totals		35.5	29.4	± 2.4	$\sqrt{\pm 1.44}$	Totals
					+/- 1.20	RSS Tolerance
					+/- 1.8	Adjusted RSS Tolerance (RSS * 1.5)
		- Negat	ive Tota ive Tota inal Gap	- 29.4	± 1.8	Adjusted RSS Tolerance
	F	GURE 8				and Maximum Gap A-B o report solved statistically.



Statistical Tolerance Analyses Example #8.5

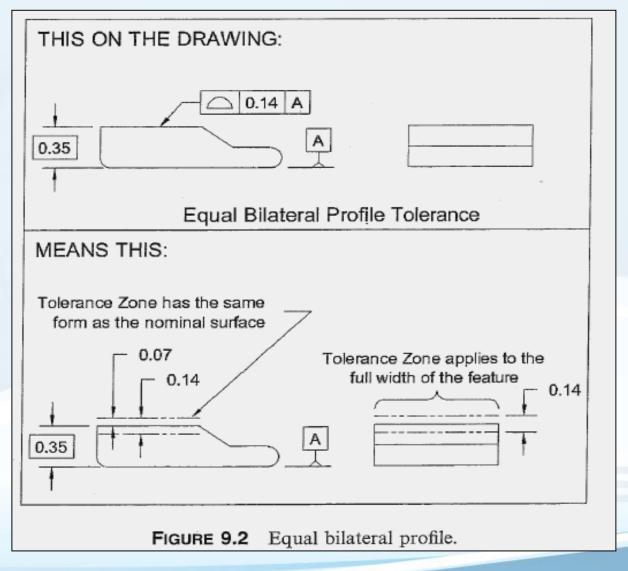
Solve for Minimum and Maximum Gap A-B

Chapter #9

Geometric Dimensioning and Tolerancing

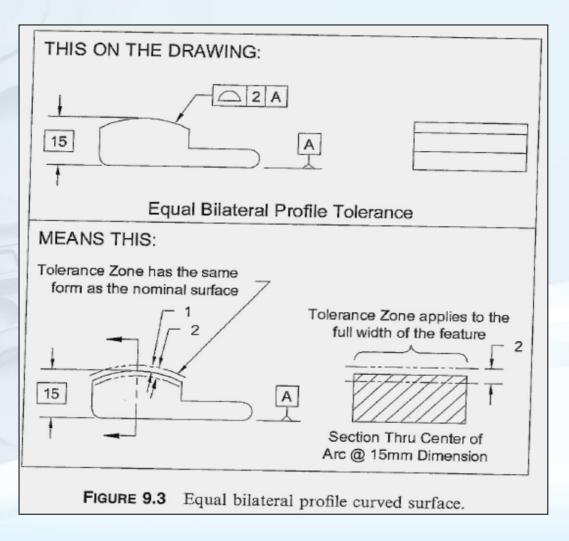
GD&T Advantage

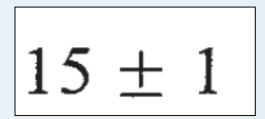
- GD&T creates coordinate systems based on datum reference frames all features on a part are unambiguously related to these coordinate systems
- Tolerance Stack ups done on parts and assemblies that have been properly dimensioned and toleranced with GD&T are easier and more straightforward than with parts defined by \pm dimensions and tolerances.
- Tolerance Stack ups performed on parts with GD&T require far fewer assumptions regarding how to interpret the tolerance specifications.

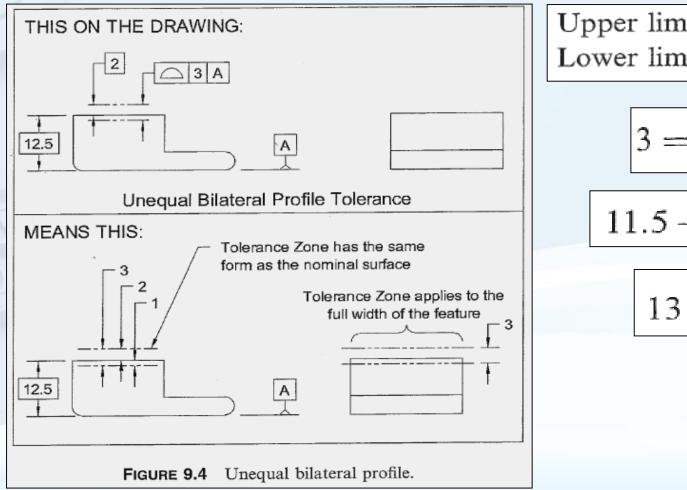


Converting GD&T Into Equal Bilateral Tolerances

- parts and assemblies dimensioned with GD&T must also be converted to equal bilateral \pm tolerances before a Tolerance Analysis can be completed.
- Plus/minus dimensions and tolerances are still used with drawings based on GD&T, but their use should be limited to defining features of size and the depth or length of features such as holes and pins.
- For many reasons, \pm dimensions and tolerances should not be used to locate features.

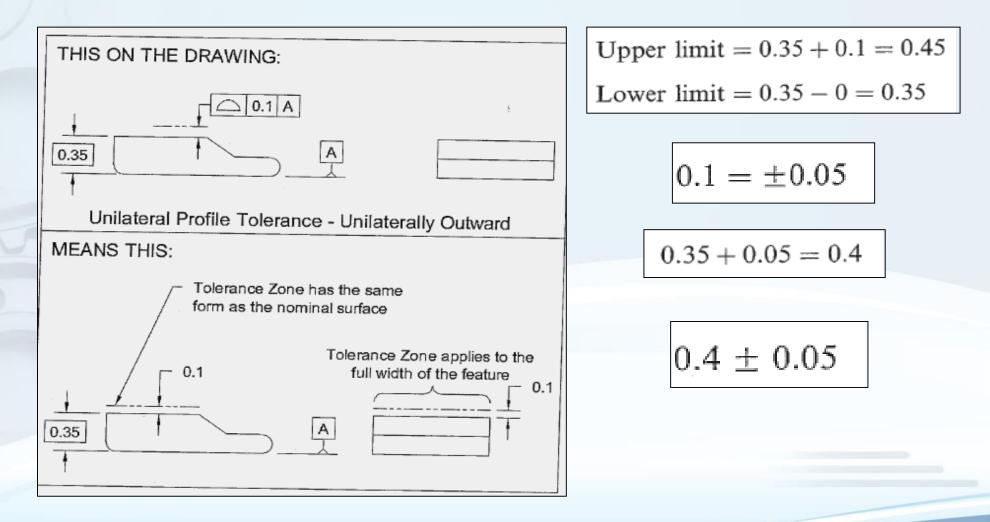



Profile Tolerances


Profile Tolerances

Profile Tolerances

Upper limit = 12.5 + 2 = 14.5Lower limit = 12.5 - 1 = 11.5

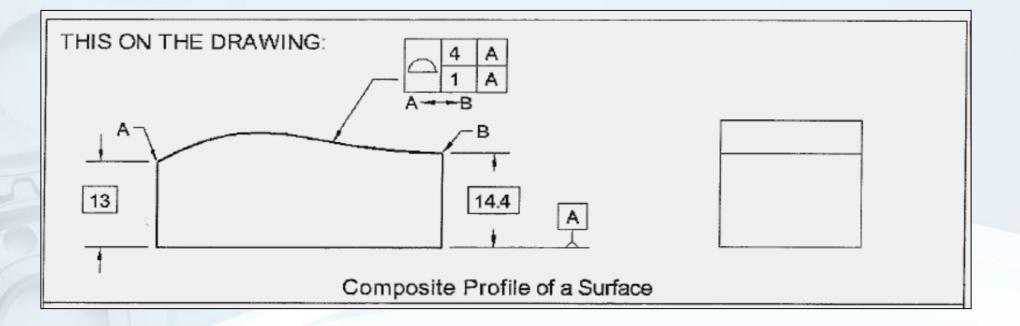

$$3 = \pm 1.5$$

$$11.5 + 1.5 = 13$$

$$13 \pm 1.5$$

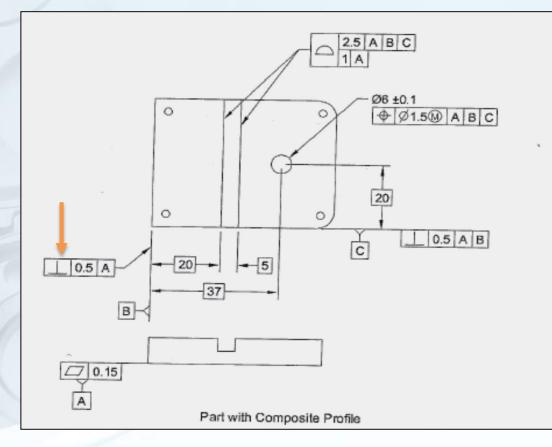
Profile Tolerances

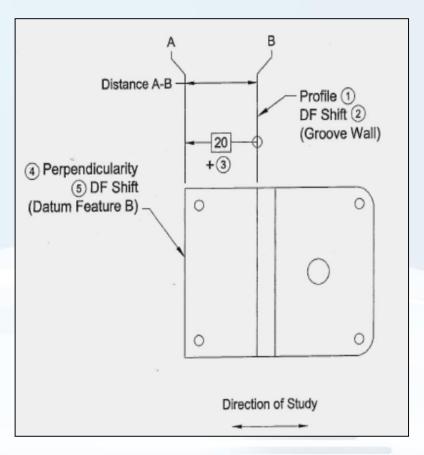
Converting GD&T Into Equal Bilateral Tolerances


Composite profile tolerances

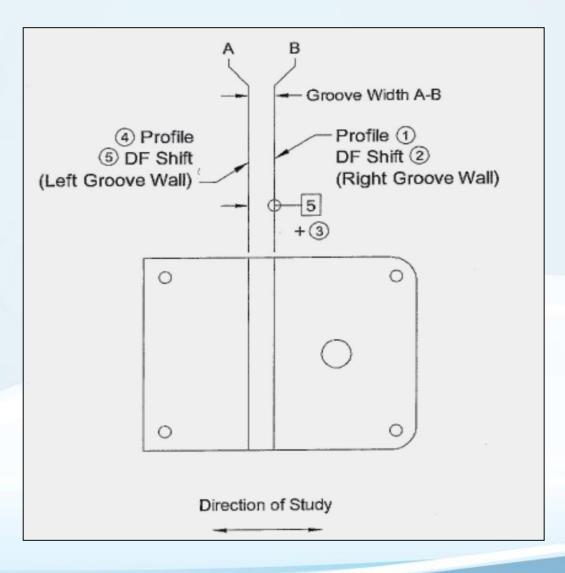
The profile tolerance specified in the uppermost segment of the feature control frame represents the total allowable variation in location of the feature to a datum reference frame.

Typically the tolerance defined in the uppermost segment is used, in Tolerance Stack ups.




Composite Profile Tolerances

Composite Profile Tolerances Example #9.1



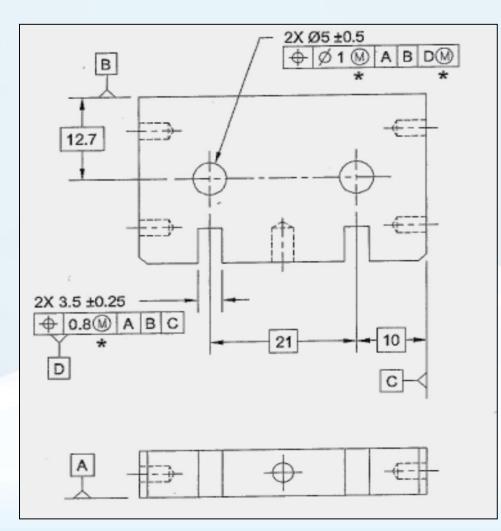
Composite Profile Tolerances Example #9.1

Tolerance St	ack r	×								
Program:	Tolerance Analysis and Stackup Manual		Release 1.2a							
Product:	Part Number Rev Description	Stack Info	armation:							
	- A Part with Groove		Figure 9-9							
Problem:	It is important to Know the Minimum Distance Between the Groove Wall and the Left Edge of the Part Revision A									
Objective:	Determine the Minimum Distance Between the Groove Wall and the Left Edge of the Part	Direction: Author:	Horizontal BR Fischer							
Description of Component / Assy	Part Number Rev Item Description	Percent								
Part with Groove	123-002 A 1 Profile: Edge Along Pt A + Dims - Dims Tol	Contrib	Dim / Tol Source & Calcs							
	2 Datum Feature Shift 4/- 1.2500 3 Dim: Groove Wall - Datum B 20 0000 4/- 0.0000	83%	Profile 2.5, A, B, C (Upper Segment)							
	4 Perpendicularity: (Datum Feature B) 20.0000 +/- 0.0000	0%	20 Basic on Dwg							
	5 Datum Feature Shift: 0.2500 +/- 0.2500 +/- 0.2500	17%	Perpendicularity 0.5, A on Dwg - See Notes							
	Dimension Totals 20.0000 0.2500 Nominal Distance: Pos Dims - Neg Dims = 19.7500		,							
	RESULTS: Arithmetic Stack (Worst Case) 19,7500 +/- 1,5000	Min 18.2500	Max							
	Statistical Stack (RSS) 19,7500 +/, 1,2748	18,2500								
Notee	Adjusted Statistical: 1.5*RSS 19.7500 +/- 1.9121	17.8379	21.6621							
Linea.	The Upper Segment Profile Tolerance is used in this Tolerance Stackup. It must be understood that the Percendicularity tolerance scaling to Dolum Eachurp P cities and the Percendicularity tolerance scaling to Dolum Eachurp P cities and the Percendicularity tolerance scaling to Dolum Eachurp P cities and the Percendicularity tolerance scaling to Dolum Eachurp P cities and the Percendicularity tolerance scaling to Percendicularity to Percendic									
	 It must be understood that the Perpendicularity tolerance splied to Datum Feature B allows portions of the Datum Feature to tilt and / or h to Datum A. Therefore the Perpendicularity tolerance should be included in the Tolerance Stackup. The Perpendicularity tolerance only a decrease, so it must be accompanied by a negative Mean Shift. The Perpendicularity tolerance is added as an equal-biliteral tolerance 	ave form en	or relative to Datum B, which is perfectly perpendicular							
	decrease, so it must be accompanied by a negative Mean Shift. The Perpendicularity tolerance stackup. The Perpendicularity tolerance only a tolerance value. The Mean Shift is indicated by placing the 0.25 value in the *- Dims* column on the same line as the Perpendicularity tolerance of tolerance value.									
Assumptions:	provide and the Perpendicularity tole	ance. See	Chapter 20 for more information.							
L										
Suggested Action:										

Composite Profile Tolerances Example #9.2

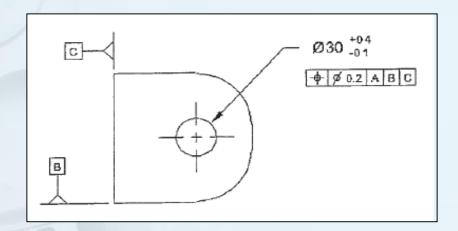
Composite Profile Tolerances Example #9.2

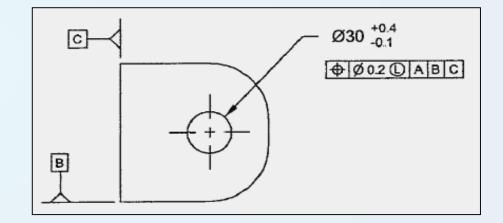
Tolerance Sta	ack												
Program:	Tolerance Analys	sis and	Stackup	Manual									
Product	Part Number	Rev	Descrit	otion								Stack Info	mation:
	-	A	Part wi	th Groove								Stack No:	Figure 9-11
Problem:	It is Important to I	Know th	ne Minir	num and Ma	kimum Gra	we Width						Date: Revision	07/04/02 A
	Determine the Mi	inimum	and Ma	kimum Groo	ve Width							Direction: Author:	Horizontal BR Fischer
Description of Component / Assy	Part Number	Rev	Item	Description								Percent	or rischer
Part with Groove	123-002	A	1	Profile: Edge	Along Pt A				+ Dims	- Dims	Tol	Contrib	Dim / Tol Source & Calcs
			2	Datum Featu	ire Shift						+/- 0.5000	50%	Profile 1, A (Lower Segment)
			. 4 1	Dim: Right G Profile: Edge	Along Pt A	- Leit Groo	we Wall		5.0000		+/- 0.0000	0%	5 Basic on Dwg
			5	Datum Featu	reShift						+/- 0.5000	50% 0%	Profile 1, A (Lower Segment)
							Nominal Distance:	Pos Dims - N	5.0000 Neg Dims =	0.0000			1100
					R	ESULTS:	A-21-2	otto De at 17		Nom	Tol	Min	Max
								etic Stack (M Statistical S	Stack (RSS)	5.0000	+/- 1.0000 +/- 0.7071	4.0000	6,0000 5,7071
Notes							Adju	sted Statistic	al: 1.6*RSS	5.0000	+/- 1.0607	3.9593	

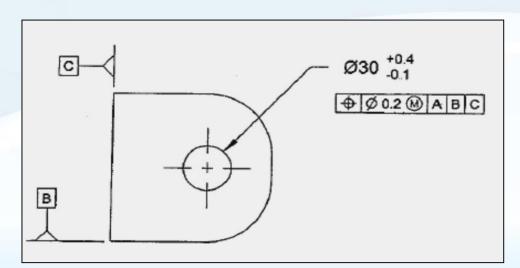


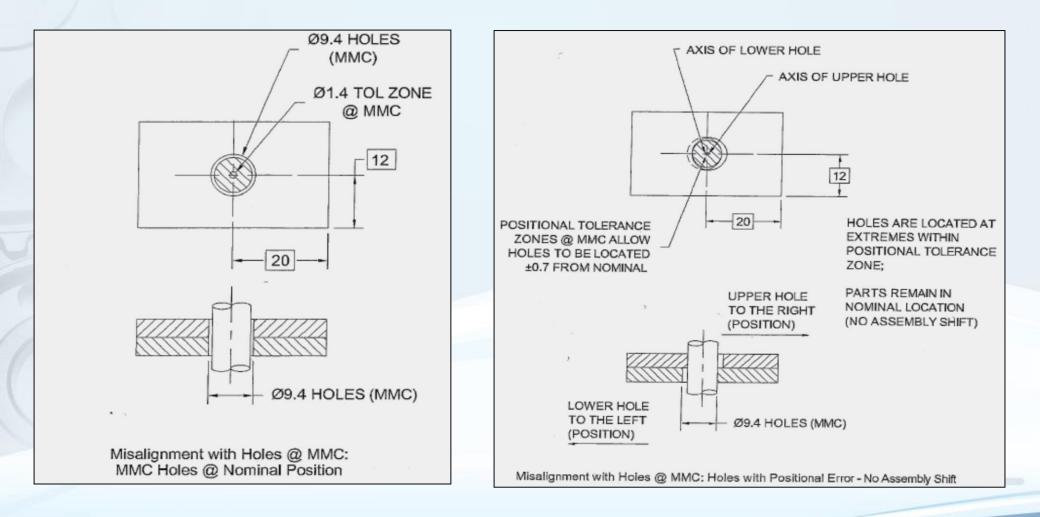
Positional Tolerances

- Positional tolerances can also be translated into \pm tolerances: MMC, LMC, RFS
- Positional tolerances specify a cylindrical or total width tolerance zone for features of size (FOS)

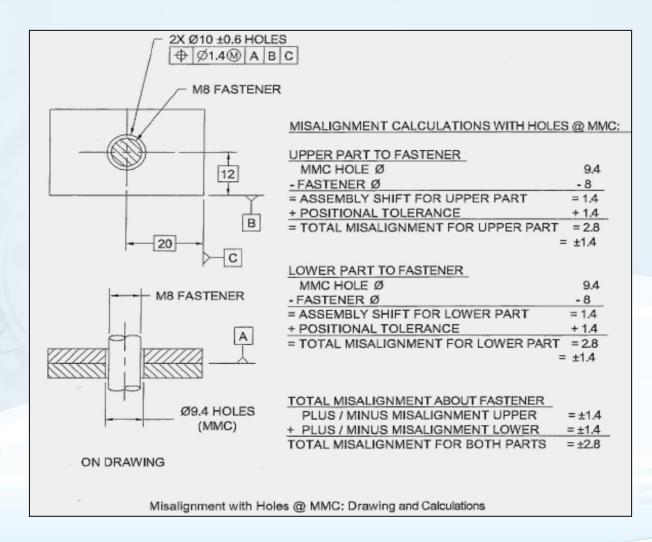


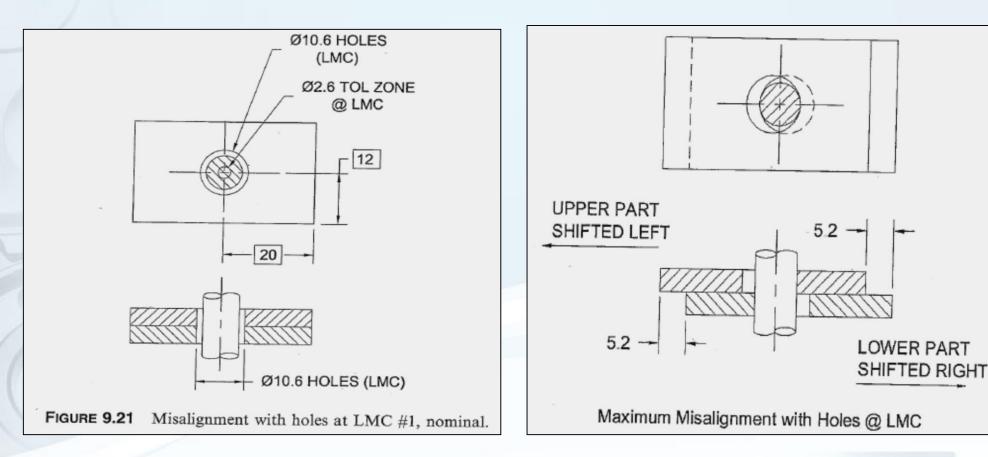

Positional Tolerances: MMC

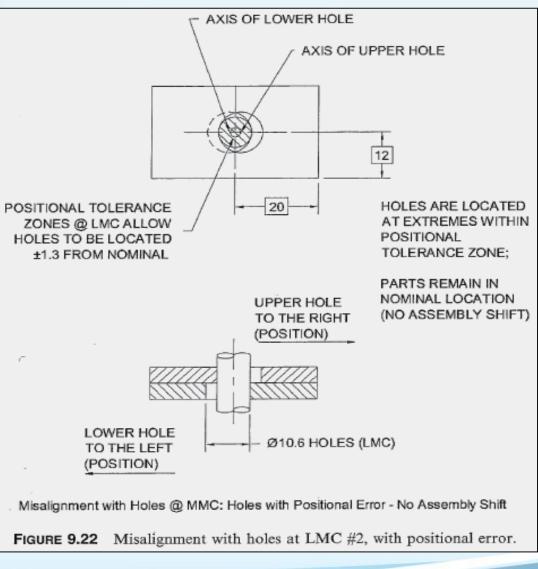


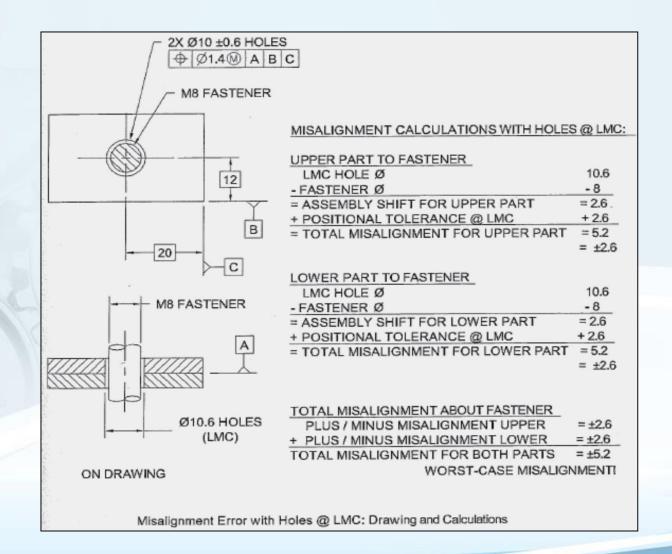

Positional Tolerances: RFS, MMC, LMC











Positional Tolerance Example #9.1

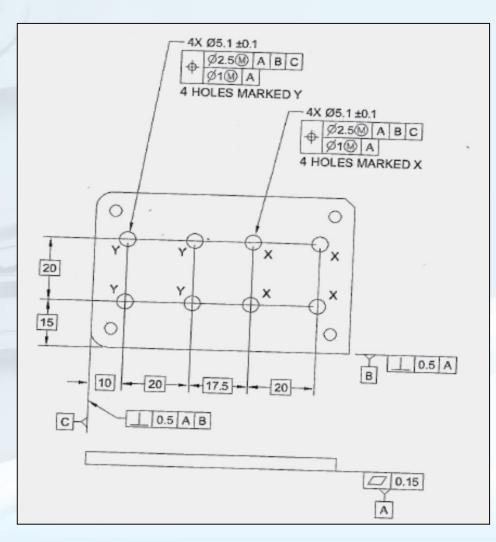
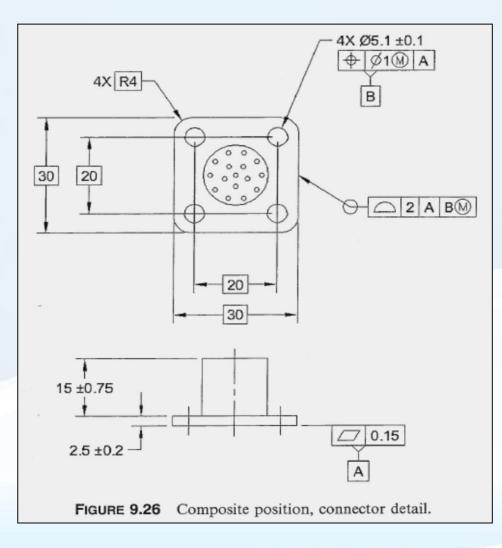
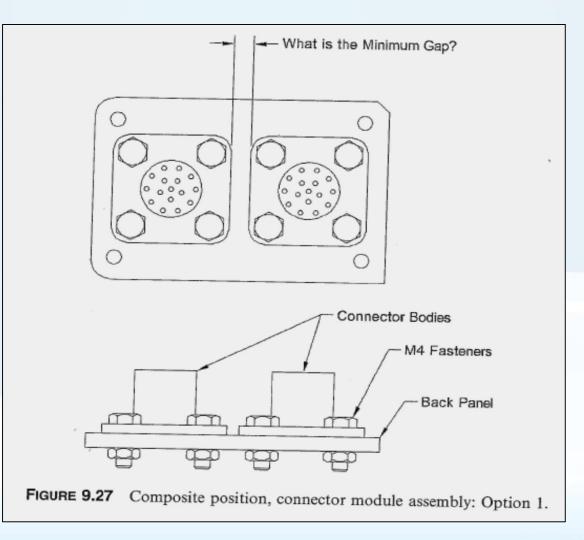
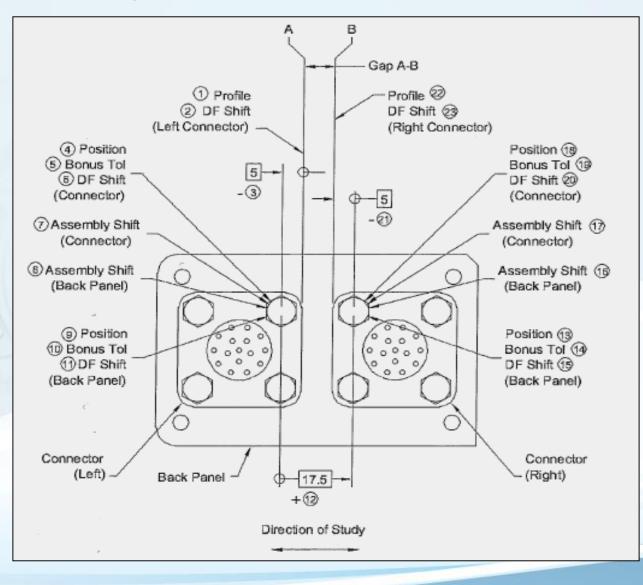




FIGURE 9.25 Composite position back panel detail: Option 1. In this example, each four hole pattern has its own composite position feature control frame. Using this method makes the two patterns distinct.



^p rogram;	Tolerance Analys	ils and	Stack	kup Manual			*			Reicase			
Product:	Part Number Rev Description								Stack information				
	Opt-1		Conn	nector Module Assembly: Option 1					Stack No.	Figure 9-29			
and the second									Date	07/04/02			
Problem:	The Connectors I	viust n	at Con	ntact Each Other at Assembly					Revision				
(b)ective:				e Contact at Assembly									
	of the second second	Cerona	Widke	E Contact at Assembly					Author:	Horizontal			
Description of									Aug lui.	BR Fischer			
Component / Ass			Item	Oescription		t Dime			Percant				
Left)	123-002	A	1	Profile: Edge Along Pt A		+ Dims	- Dims	Tal	Contrib	Dim / Tol Source & Calcs			
oung			2	Datum Feature Shift (DFreume-	DFSs)/2			+/- 1.0000	12,0%	Profile 2, A, 8m			
			3	Dim; Edge of Connector - Datum	9		6 0000	+/- 0.6000	7.2%	= (5.1 + 0.1 - (5.1 - 0.1 - 1)) / 2			
				Position: DFe Holes			00000	+/- 0.0000	0%	= (30 Basic - 20 Basic) / 2 on Dwg			
				Bonus Tolerance				+/- 0.0000	0%	N/A - (See Note 3)			
				Datum Feature Shift				+- 0.0000	0%	N/A - (See Note 3)			
ack Panel	123-001	A	-	Assembly Shift: (Mounting Holes)	#ç - F)/2			0000.0 -/+		N/A - DFAndt a Feature of Size			
	120-001	~	8	Assembly Shift: (Mounting Holesy	4c-F)/2			+/- 0.6000	7.2%	= ((5.1 + 0.1) - 4) / 2 (See Note 2)			
			10	Position (Holes on Left) Bonus Tolerance				4/- 1.2500		= ((5.1 + 0.1) - 4) / 2 (See Note 2)			
			11	Datum Feature Shift				+/- 0.1000	1.2%	Position dia 2.5 (2) MMC A, B, C (Upper Segment) = (0.1 + 0.1) / 2			
			12	Dim: CL Left Holes - CL Dight Mail	DKC			+/- D.0000		NA - (See Note 1)			
			13	Position (Hales on Right)		17.5000		e/- 0.0000	0%	17.5 Basic on Dwo			
			14	Bonus Tolerance		<u> </u>		+/- 1.2500	15.1%	Poston dia 2.5 @ MMC A, B, C (Upper Segment)			
11			15	Datum Feature Shift				+/- 0.1000	1.4.29	=(0.1 + 0.1)/2			
nnector	123-002		16	Assembly Shift: (Mounting Holesu	c-F)/2			+/- 0.0000	0.0%	N/A - (See Note 1)			
ight)	123-002	A	17	Assembly Shift (Mounting Holesu	c-F)/2			+/- 0.6000	7.2%	= ((5.1 + 0.1) - 4) / 2 (See Note 2)			
ogi nj				Position: DF _b Holes		+			7.2%	= ((5.1 + 0.1) - 4) / 2 (See Note 2)			
				Bonus Tolerance		+		+/- 0.0000		N/A - (See Note 3)			
			20	Datum Feature Shift				+/- 0.0000		N/A - (See Note 3)			
			21	Dim: Datum B - Edge of Connecto		1	5 0000	+/- 0.0000	0%	N.A - DFA not a Feature of Size			
				Profile: Edge Along Pt B			0.0000	+/- 1.0000	0%	= (30 Basic - 20 Basic) / 2 on Dwg			
			2.0	Datum Feature Shift: (DF) g unc - D				*/- 0.6000		Profile 2, A, Bm			
					Dimension Total	17.5000	10,0000	1 0 2 0 0 0	1-4.70	= (5.1 + 0.1 - (6.1 - 0.1 - 1)) / 2			
					Nominal Distance: Pos Dims -	Neg Dims =	7,5000						
				RESULTS:	Arithmetic Stack (Worst Case)	Nom 7 6000	Tol	Min	Mac			
					Sististical	Stack (RSS)	7 5000	41 0 2000	-0.8000	15.8000			
					Adjusted Statisti	al 1.5 RSS	7,5000	46-4.0542	4.7972	10.2028			
Notes:										11.0042			
	1 - Datum Feature	Shift is	not in	ncluded for the Back Panel in this Te d 4mm as Major Diameter of Thread	litrance Stario in becaute Data as								
	2 - M4 Screw Dime 3 - The Parettopoid 7	nsions	: Usec	d 4mm as Major Diameter of Thread	is	Features A, B	& C are not	Features of Sit	C89.				
	basis from which	uleran	ceon	o amm as Major Diameter of Thread the Connector's Datum Feature B i atures on the part are located in the	ioles does not contribute to the St	aciam. Recau	to the hole	and the second					
	South States Willing	0001	101 103	atures on the part are located in the	direction of the Stackup.	and the second	ee ute male:	and the secon	uary Datum	Feature, they are the			
Assumptions:													
		-											
opested Action:		_											
	- Using the tolecand	e m the	eller	of S and out out is a state									
	and an and and		, o pps	er Stigment on Lines 9 & 13, the wo	rst-case Toterance Stackup resu:	Is 0.8 interfere	ence.						

Positional Tolerance Example #9.2

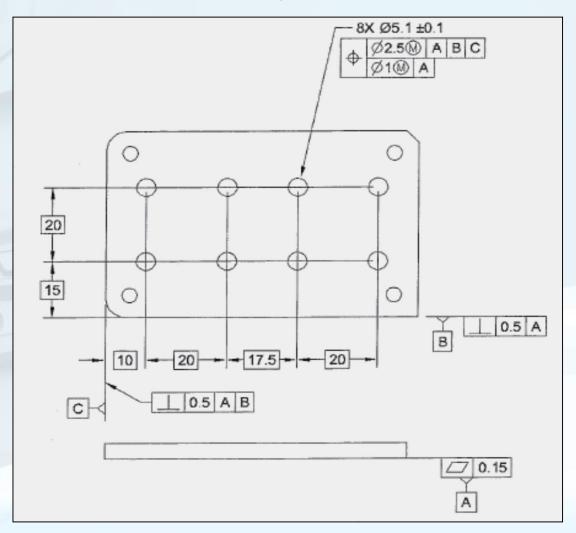


FIGURE 9.30 Composite Position, back panel detail: Option 2. In this example, all eight holes are toleranced with a single Composite Position Feature Control Frame. Using this method treats the two patterns as a single pattern.

Positional Tolerance Example #9.2

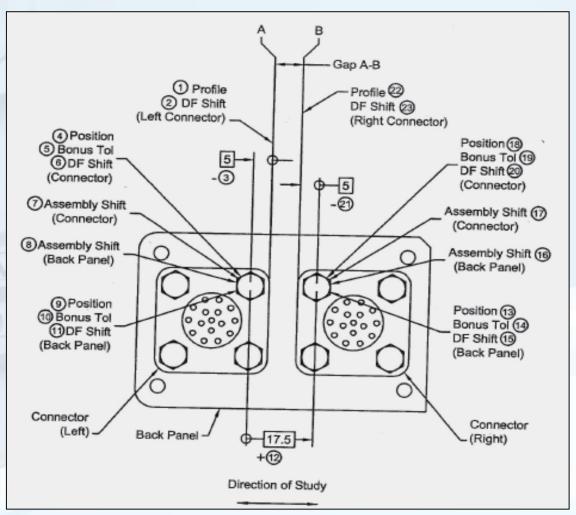
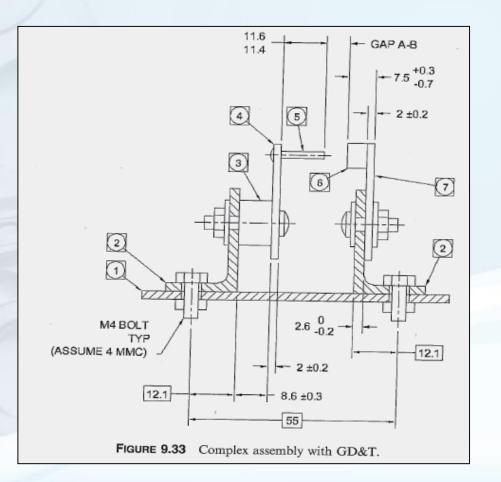
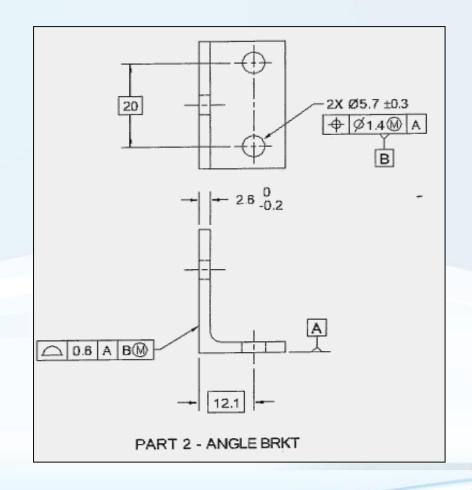
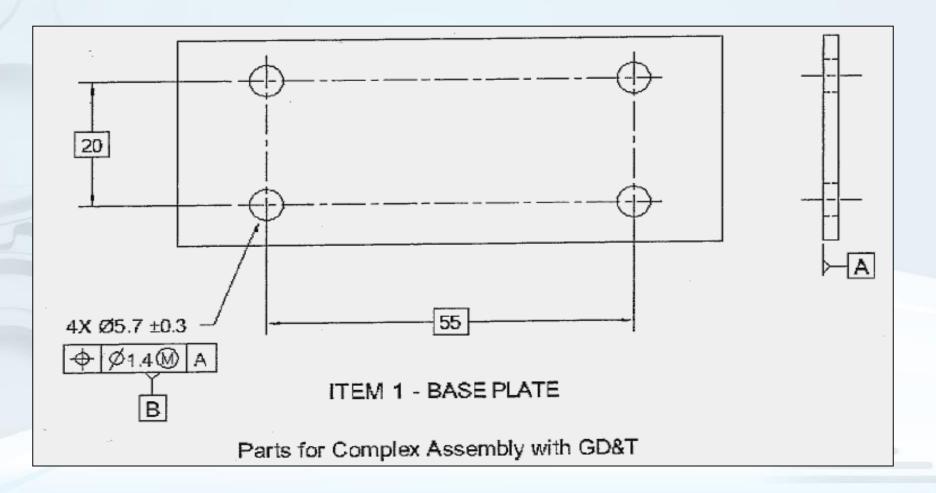


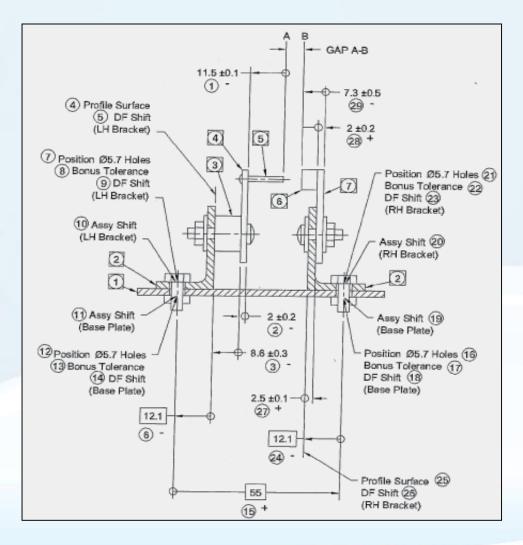
FIGURE 9.31 Composite Position: Option 2 Tolerance Stack up sketch.

Tolerance Stack up with Option 1 Back Panel:


Chain of Dimensions and Tolerances


Lower Segment Tolerances Used for Line Items 9 & 13


Program:	Tolerance Analys	sis and	Stack	ip Manual				Stack Info	mation
Product:	Part Number Rev Description Stack No. Figure 9-32								
	Opt-2			ector Module Assembly: Option 2		Date:	07/04/02		
Presidente en l			_					Revision	
Problem:	The Connectors I	Musting	EC01	act Each Other at Assembly					
Objective	Determine if Con	nectors	Make	Contact at Assembly				Direction: Author:	Horizontal BR Fischer
								AUDIOL.	DR rischer
Description of Component / Assy	Part Number			Description				Percent	
Connector	123-002	A		Description Profile: Edge Along Pt A	+ Dims	- Dims	Tol		Dim / Tol Source & Calcs
(Left)	140-004			Datum Feature Shift: (DF _{8 gluxe} - DFS ₈)/ 2			+/- 1.0000		Profile 2, A, Bm
(energy			3	Dim: Edge of Connector - Datum B		5 0000	+/- 0.6000	8.8%	= (5.1+0.1-(5.1-0.1-1))/2
			4	Position: DFs Holes		0.0000	+/- 0.0000	0%	= (30 Basic - 20 Basic) / 2 on Dwg N/A - (See Note 3)
			5	Bonus Tolerance		1	+/- 0.0000	0%	N/A - (See Note 3)
		- · · · ·	6	Oatum Feature Shift			+- 0.0000	0%	N/A - DF _A not a Feature of Size
			7	Assembly Shift: (Mounting Holesund - F) / 2	-		+- 0.6000	8.8%	= ((5.1 + 0.1) - 4)/2 (See Note 2)
Back Panel	123-001	A	8	Assembly Shift: (Mounting Holesuxc - F) / 2			+/- 0.6000	8.8%	= ((5.1 + 0.1) - 4)/2 (See Note 2) = ((5.1 + 0.1) - 4)/2 (See Note 2)
			9	Position (Holes on Left)			+- 0.5000	7.4%	Position dia 1 (& MMC A (Lower Segment)
				Bonus Tolerance			+/- 0.1000	1.5%	= (0.1 + 0.1)/2
				Datum Feature Shift			+ 0.0000	0.0%	N/A - (See Note 1)
				Dim: CL_Left Holes - CL_Right Holes Position (Hales on Right)	17.5000		-+/- 0.0000	.0%	17.5 Basic on Dwg
				Bonus Talerance			++ 0.5000	7.4%	Position dia 1 @ MMC A (Lower Segment) = (0.1 + 0.1) / 2
				Datum Feature Shift			+/- 0.0000		N/A - (See Note 1)
			16	Assembly Shift: (Mounting Holesuve - F) / 2		1	+/- 0.6000	8.8%	= ((5.1 + 0.1) - 4)/2 (See Note 2)
Connector	123-002	A .	17	Assembly Shift: (Mounting Holesuve - F) / 2			+/- 0.6000	8.8%	= ((5.1 + 0.1) - 4)/2 (See Note 2)
(Right)			18	Position: DFg Holes	-		+/- 0.0000	0%	N/A - (See Note 3)
				Bonus Tolerance			+/- 0.0000	0%	N/A - (See Note 3)
				Datum Feature Shift			+/- 0.0000	0%	NA - DFA not a Feature of Size
			21	Dim: Datum B - Edge of Connector		5.0000	++- 0.0000	0%	= (30 Basic - 20 Basic) / 2 on Dwg
				Profile: Edge Along Pt B			+/- 1.0000		Profile 2, A, Bm
		L	23	Datum Feature Shift: (DFe@uwc - DFSe) / 2 Dimension Total	17 5000	10.0000	+/- 0.6000	8.8%	= (5.1 + 0.1 - (6.1 - 0.1 - 1))/2
				Nominal Distance: Pos Dima					
				Profile of Crocollege, Post Delta	· Neg Drins -	7,5000	2		
						Nom	Tol	Min	Max
				RESULTS: Arithmetic Stack			+/- 6.8000	0.7000	
				Adjusted Statist	Stack (RSS)			5.3367	
				Adjusted statist	ICAL 1.5 REE	1 7.5000	*# 3,2450	4.2000	10.7450
Notes:									
	1 - Datum Featu	nt Shift	is not	included for the Back Panel in this Tolerance Stackup because Datum	Features A,	B & C are n	ot Features of:	Size.	
	2 - M4 Screw Dir	mension	ns: Us	80 4mm as Maior Diameter of Threads					
	basis from with	in courses arch all r	ance o other t	n the Connector's Datum Feature 8 Holas does not contribute to the a satures on the part are located in the direction of the Stackup.	Stackup. Вес	ause the hol	es are the sec	ondary Datu	m Feature, they are the
	and the second state		- <u></u>	consistent of the solution of the direction of the Statistical					
Assumptions:									
2									
Succested Action:									
Suggested Action:	- Using the tolers	ance in t	theLo	wer Segment on Lines 9 & 13, the worst-case. Tolepance Stack on mark	it is 0.7 Close	ronne.			
	- Using the toler	ance in t	the Lo	wer Segment on Lines 9 & 13, the worst-case Tolerance Stackup resu	ult is 0.7 Clear	rance.			



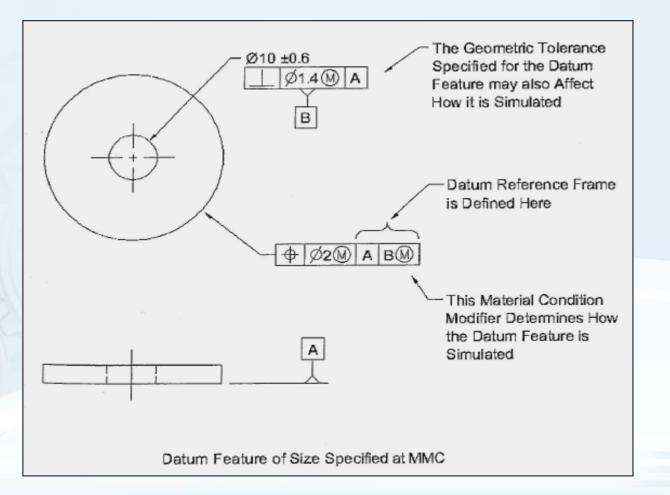
Dim	Part				
No	No	+	-	+/-	Description
1	5		11.5	+/- 0.1	Dim: Pin Length
2	4		2	+/- 0.2	Dim: LH Plate Thickness
3	3		8.6	+/- 0.3	Standoff Thickness
4	2			+/- 0.3	Profile of Flange Face on LH Angle Brkt
5	2			+/- 1	Datum Feature Shift: ((5.7 + 0.3) - (5.7 - 0.3 - 1.4)) / 2 = +/-1
6	2		12.1	+/- 0	Dim: Flange Face - CL DFB Holes on LH Angle Brkt (Basic)
7	2			+/- 0	Position of Dia 5.7 DF, Holes on LH Angle Brkt: N/A
8	2			+/- 0	Bonus Tolerance: N/A
9	2			+/- 0	Datum Feature Shift: N/A
10	2			+/- 1	Assembly Shift: LH Angle Brkt Holes @ LMC: 6 (H) - 4 (F) = 2 / 2 = +/-1
11	1			+/- 1	Assembly Shift: Base Plate LH Holes @ LMC: 6 (H) - 4 (F) = 2 / 2 = +/-1
12	1			+/- 0.7	Position of LH Dia 5.7 DF _B Holes on Base Plate
13	1			+/- 0.3	Bonus Tolerance: (0.3 + 0.3) / 2 = +/-0.3
14	1			+/- 0	Datum Feature Shift: N/A - DFA not a Feature of Size
15	1	55		+/- 0	Dim: CL LH DF ₈ Holes - CL RH DF ₈ Holes on Base Plate (Basic)
16	1			+/- 0.7	Position of RH Dia 5.7 DFn Holes on Base Piate
17	1			+/- 0.3	Bonus Tolerance: (0.3 + 0.3) / 2 = +/-0.3
18	1			+/- 0	Datum Feature Shift: N/A - DFA not a Feature of Size
19	1			+/- 1	Assembly Shift: Base Plate LH Holes @ LMC: 6 (H) - 4 (F) = 2 / 2 = +/-1
20	2			+/- 1	Assembly Shift: RH Angle Brkt Holes @ LMC: 6 (H) - 4 (F) = 2 / 2 = +/-1
21	2			+/- 0	Position of Dia 5.7 DF ₈ Holes on RH Angle Brkt: N/A
22	2			+/- 0	Bonus Tolerance: N/A
23	2			+/- 0	Datum Feature Shift: N/A
24	2		12.1	+/- 0	Dim: CL DFB Holes - Flange Face on RH Angle Brkt (Basic)
25	2			+/- 0.3	Profile of Flange Face on RH Angle Brkt
26	2			+/- 1	Datum Feature Shift: ((5.7 + 0.3) - (5.7 - 0.3 - 1.4)) / 2 = +/-1
27	2	2.5		+/- 0.1	RH Angle Brkt Flange Thickness
28	7	2		+/- 0.2	Thickness of RH Plate
29	6&7		7.3	+/- 0.5	Thickness of RH Plate & Boss
		59.5	53.6	+/- 10	Worst Case Tolerance
				+/- 2.79	RSS Tolerance
				+/- 4.18	Adjusted RSS Tolerance (RSS * 1.5)
	Positiv	e Total	59.5		1
	Negative Total -53.6				
				+/- 4.18	Adjusted RSS Tolerance
		1	Max Gap	10.08	Clearance
			Min Gap	1.72	Clearance
3. ×					

Positional Tolerance Summary

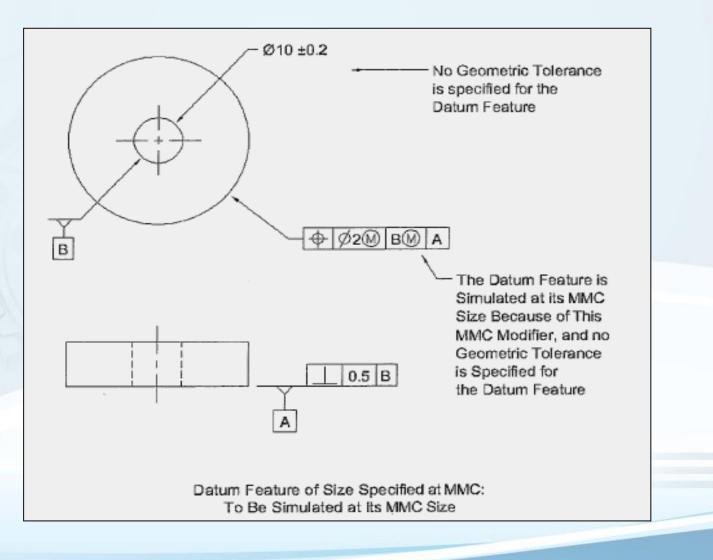
- Converting positional tolerances to equal bilateral \pm tolerances
- Positional tolerances are relatively easy to convert into equivalent \pm location tolerances.
- The method used to convert a positional tolerance depends on the material condition modifier (RFS, MMC, or LMC) applied to the tolerance and whether the tolerance is applied to features that affect the location of other features in the Tolerance Stack up.

Composite Positional Tolerance

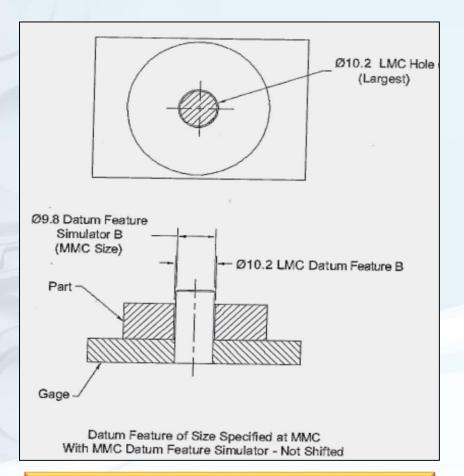
- The positional tolerance specified in the uppermost segment of the feature control frame represents the total allowable variation in location of the features to a datum reference frame.
- Typically the tolerance defined in the uppermost segment is used in Tolerance Stack ups.
- The tolerance zones defined in the lower segments of a composite feature control frame are not basically located to a datum reference frame— they may only be basically oriented to a datum reference frame and are basically located to each other in the case of a pattern.

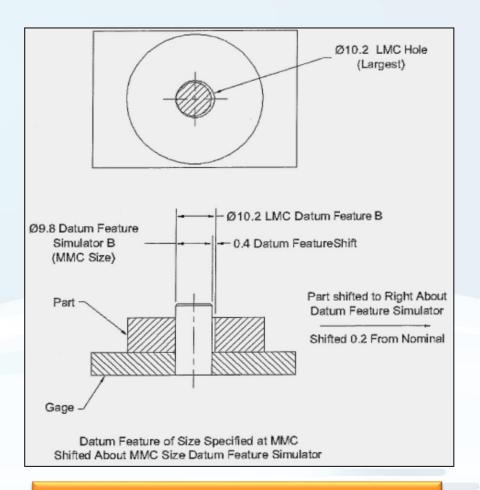

Composite Positional Tolerance

- both are included and formatted in the Tolerance Stack up report the same way as a single segment positional tolerance.
- Three lines are entered into the Tolerance Stack up report: the positional tolerance is entered on the first line, the bonus tolerance is entered on the second line, and datum feature shift is entered on the third line.
- The positional tolerance specified in a lower segment may be used in a Tolerance Stack up if the Tolerance Stack up is between features in a pattern. The positional tolerance specified in a lower segment may also be used with more advanced tolerancing techniques, such as when "simultaneous requirements" is explicitly stated



- When datum features of size are referenced at MMC or LMC, their datum feature simulators may be smaller or larger than the datum features of size, which allows the part to shift or move relative to the datum feature simulators.
- The worst-case difference in size between the datum features and their simulators is the amount of datum feature shift.
- Datum shift means the datum features can shift during the inspection process—there is not a one-to-one relationship between the datum features and the datum feature simulators.





Datum Feature Shift

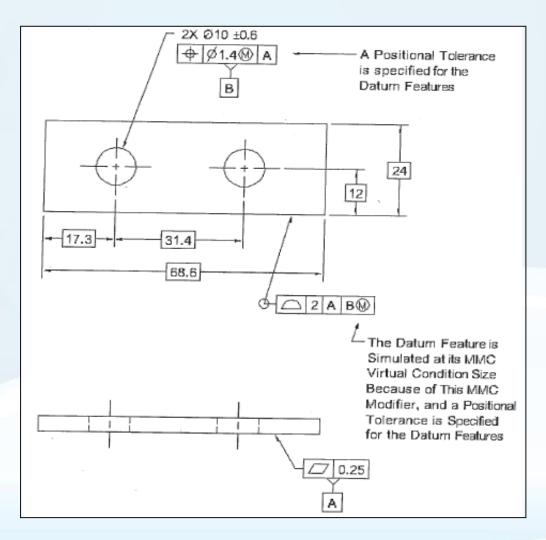
No Datum Shift

Datum Shift

Datum Feature Shift

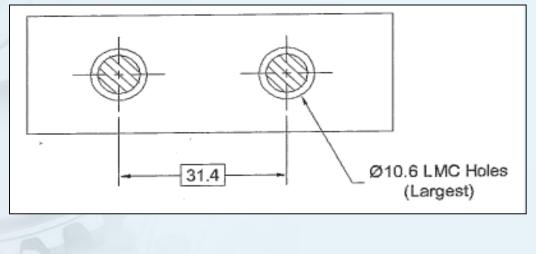
MMC size =
$$\emptyset 10.0$$
 nominal size

$$\frac{-0.2 \text{ size tolerance}}{= \emptyset 9.8 \text{ MMC size}}$$


LMC (largest) size of the hole = $\emptyset 10.0$ nominal size = $\frac{+0.2 \text{ size tolerance}}{\emptyset 10.2 \text{ LMC size}}$

Datum feature shift = $\emptyset 10.2$ LMC Size

-Ø9.8 MMC Size


- = 0.4 Datum Feature Shift
- Divide the datum feature shift by $2 = 0.4/2 = \pm 0.2$. This is the equal bilateral \pm equivalent

Datum Feature Shift

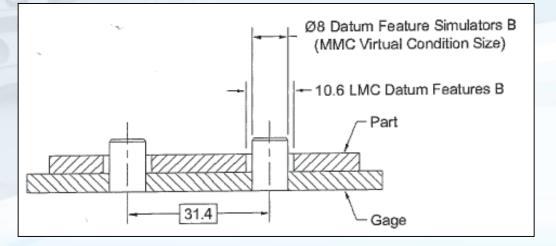


FIGURE 9.44 Datum feature shift: Datum feature of size to be simulated at MMC VC with datum feature simulator, no shift.

Datum Features of Size Referenced at MMC:

With MMC Virtual Condition Datum Feature Simulators - Not Shifted

Datum Feature Shift

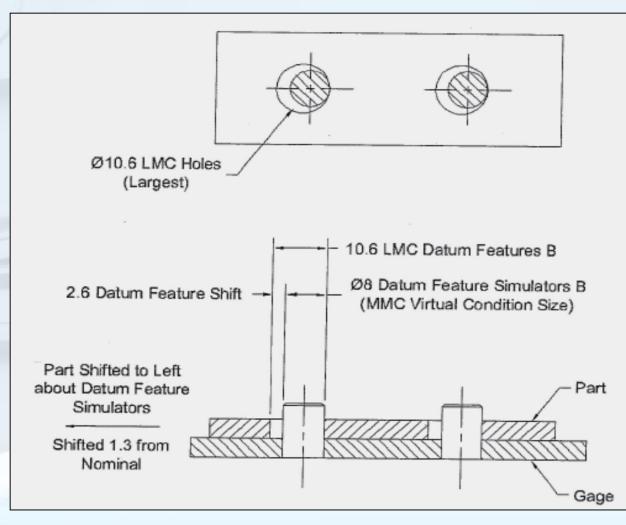


FIGURE 945 Datum feature shift: Datum feature of size to be simulated at MMC VC with datum feature simulator, shifted.

Datum Features of Size Referenced at MMC:

Shifted About MMC Virtual Condition Datum Feature Simulators

THANK YOU Are there any Questions?

Info-in@omnex.com

