Understanding Core Tools: PFMEA and Control Plans

Process Failure Modes and Effect Analysis (PFMEA)

© 2018, Omnex, Inc. 315 Eisenhower Parkway Suite 214 Ann Arbor, Michigan 48108 USA 734-761-4940 Fax: 734-761-4966

> Fifth Edition June 2018

This publication is protected by Federal Copyright Law, with all rights reserved. No part of this publication may be stored in a retrieval system, transmitted or reproduced in any way, including but not limited to photocopy, photograph, magnetic or other record, without the prior agreement and written permission of the publisher.

Omnex provides training, consulting and software solutions to the international market with offices in the USA, Canada, Mexico, China (PRC), Germany, India, the Middle East, and SE Asia. Omnex offers over 400 standard and customized training courses in business, quality, environmental, food safety, laboratory and health & safety management systems worldwide.

> Email: info@omnex.com Web: www.omnex.com

Course Objectives: Understanding Core Tools

- Understand how to ensure that the development and implementation of the manufacturing process meets all customer and program requirements
- Understand the activities involved in the realization of new products and processes
- Understand the role of PFMEAs
- Realize that process design and development should focus on robustness and error prevention rather than detection

Course Agenda

- Chapter 1: APQP and Process Failure Mode and Effects Analysis (PFMEA) Introduction
- Chapter 2: APQP Inputs to the PFMEA, Process Flow
 - Breakout Exercise 1: Process Flow Diagram
- Chapter 3: Developing a Process FMEA
 - Breakout Exercise 2: Starting the PFMEA Form
 - Breakout Exercise 3: Potential Causes
 - Breakout Exercise 4: Process Controls
 - Breakout Exercise 5: Effects, Severity and Actions Plans
- Chapter 4: Developing a Control Plan
 - Breakout Exercise 6: Creating a Control Plan

A BRIEF INTRODUCTION TO OMNEX

Omnex Introduction

- International consulting, training and software development organization founded in 1985.
- Specialties:
 - Integrated management system solutions.
 - Elevating the performance of client organizations.
 - Consulting and training services in:
 - Quality Management Systems, e.g. ISO 9001, IATF 16949, AS9100, QOS
 - Environmental Management Systems, e.g. ISO 14001
 - Health and Safety Management Systems, e.g. ISO 45001
- Leader in Lean, Six Sigma and other breakthrough systems and performance enhancement.
 - Provider of Lean Six Sigma services to Automotive Industry via AIAG alliance.

About Omnex

- Headquartered in Ann Arbor, Michigan with offices in major global markets.
- In 1995-97 provided global roll out supplier training and development for Ford Motor Company.
- Trained more than 100,000 individuals in over 30 countries.
- Workforce of over 400 professionals, speaking over a dozen languages.
- Former Delegation Leader of the International Automotive Task Force (IATF) responsible for ISO/TS 16949.
- Served on committees that wrote QOS, ISO 9001, QS-9000, ISO/TS 16949 and its Semiconductor Supplement, and ISO IWA 1 (ISO 9000 for healthcare).
- Member of AIAG manual writing committees for FMEA, SPC, MSA, Sub-tier Supplier Development, Error Proofing, and Effective Problem Solving (EPS).

Omnex is headquartered and operates from the United States through offices in Michigan.

The company maintains international operations in many countries to provide comprehensive services to clients throughout Western Europe, Latin America and the Pacific Rim.

> www.omnex.com info@omnex.com

OMNEX

WWW.OMNEX.COM

Copyright 2018 Omnex, Inc. All Rights Reserved.

Rules of the Classroom

- Start and end on time
- Return from breaks and lunch on time
- ✓ All questions welcome
- Your input is valuable and is encouraged
- Don't interrupt others
- One meeting at a time
- Listen and respect others' ideas
- No "buts" keep an open mind
- Phones in Do Not Disturb (silent) mode
- ✓ No e-mails, texting or tweeting during class

If you must take a phone call or answer a text please leave the room for as short a period as possible

Icebreaker

- Instructor Information:
 - Name
 - Background
- Student Introductions:
 - Name OMNEX
 - Position / Responsibilities
 - Your involvement in the APQP process?
 - Do you manage or use a PFMEA?
 - What do you expect to take away from this class?
 - Please share something unique and/or interesting about yourself.

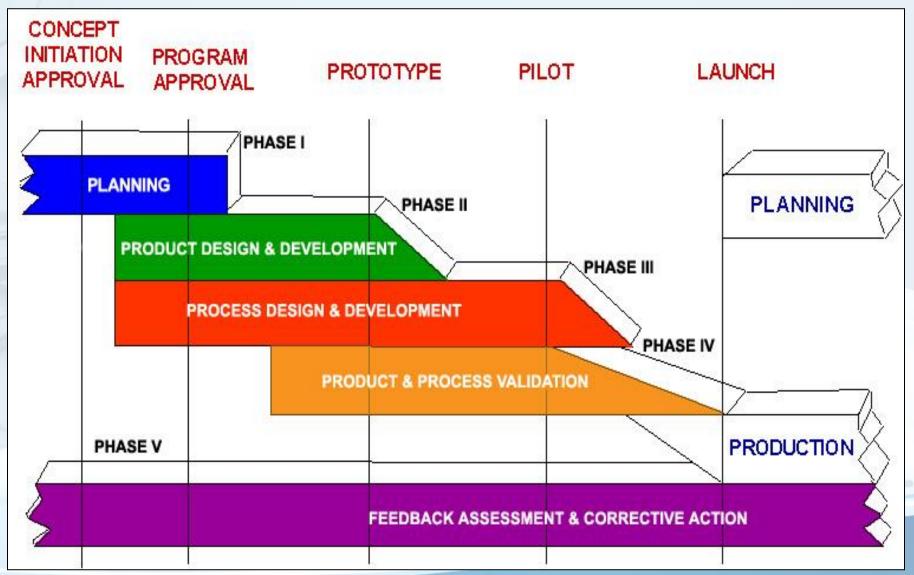
Chapter 1

APQP and Process Failure Mode and Effects Analysis (PFMEA) Introduction

Chapter 1: APQP and PFMEA Introduction – What We Will Cover

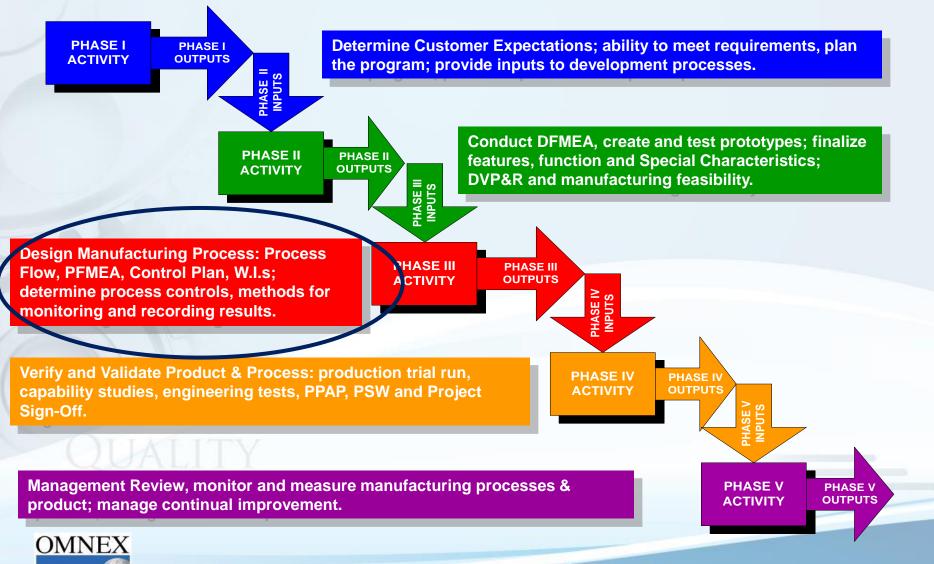
Learning Objectives

At the end of this chapter, you will be able to:


- Note the phases in the Advance Product Quality Planning (APQP) process where the FMEA is initiated
- Describe the purpose of the PFMEA

Chapter Agenda

- APQP Phases
- Concurrent Engineering
- PFMEA Defined
- PFMEA as a Living Document

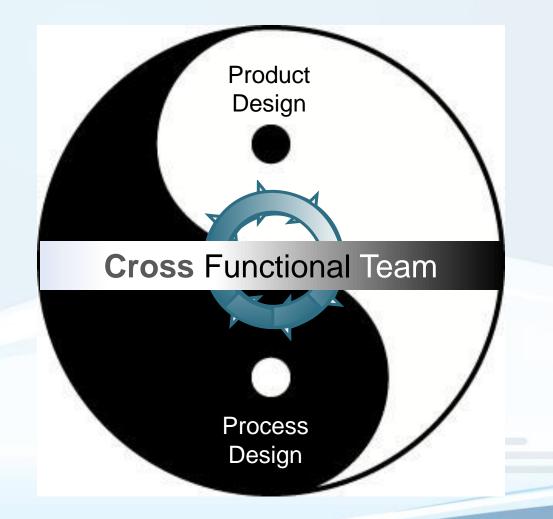

Alignment of APQP Processes

WWW.OMNEX.COM

Outputs of Each Phase are Inputs to Subsequent Phases

WWW.OMNEX.COM

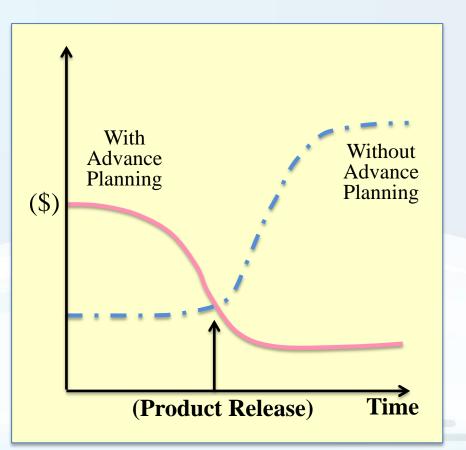
Concurrent Engineering

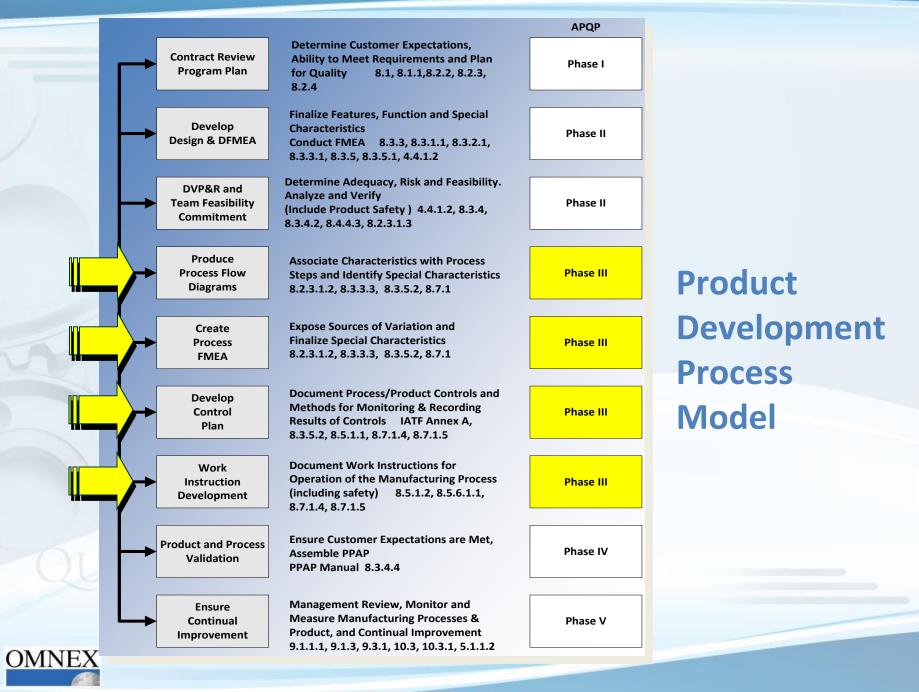

Concurrent (or Simultaneous) Engineering is basic to:

- Effective knowledge sharing between all key functions to achieve common goals
- Elimination of developmental "Loop-Backs"
 - Engineering changes
 - Process re-engineering
 - Tool re-design
- Develop optimal product and process designs
- Minimize product launch time and quality risk
- On-time deliverables

"Yin/Yang" of Concurrent Engineering

Changes in either development activity may have profound impact on the counterpart development activity—they are two halves of the same process.




Advance Planning: Concurrent Engineering

Benefits

- Resources are focused on customer satisfaction
- Required changes are identified early
- Changes close to or after product launch are avoided
- Process can accommodate unavoidable changes
- Reflects the Yin/Yang reality of development

WWW.OMNEX.COM

Copyright 2018 Omnex, Inc. All Rights Reserved.

PFMEA

The PFMEA supports manufacturing process development in **reducing the risk of failures** by:

- Identifying and evaluating the process functions and requirements. O.M.N.EX
- Identifying and evaluating potential product and processrelated failure modes, and the effects of the potential failures on the process and customers
- Identifying the potential manufacturing or assembly process causes

Process FMEA Objectives

- Improved Process \rightarrow Robust Process
- Improved Process Control
- Identify and Minimize Risk PFMEA is an analytical technique utilized by a process-responsible engineer/team to:
 - Ensure that potential failure modes and associated causes are considered and addressed
 - Standardize method of identifying, evaluating, and prioritizing risks from process causes
 - Prevent the "customer" from experiencing failure modes
 - Meet product expectations
 - Formalize the mental discipline that should be used in planning any manufacturing process

Requirements

- What <u>SHOULD</u> the process be doing?
- What are the expected outcomes for all uniquely identified print items and process characteristics at each step?
- What do we expect to see if the process step is operating correctly, in terms of:
 - Product characteristics?
 - Process characteristics (parameters)?
 - Acceptance criteria

PFMEA Documents Living Information

The Process FMEA is a living document and should:

- Be initiated before or at the feasibility stage (APQP Phase II)
- Be initiated **prior to** producing tooling for production
- Take into account all manufacturing operations, from individual components to assemblies
- Include all processes within the plant that can impact the manufacturing and assembly operations such as shipping, receiving, transporting of material, storage, conveyors, or labeling

Chapter 1: APQP and PFMEA Introduction – What We Covered

Learning Objectives

You should now be able to:

- Note the phases in the Advance Product Quality Planning (APQP) process where the FMEA is initiated
- Describe the purpose of the PFMEA

Chapter 2

APQP Inputs to the PFMEA, Process Flow Diagram

Chapter 2: APQP Inputs to the PFMEA — What We Will Cover

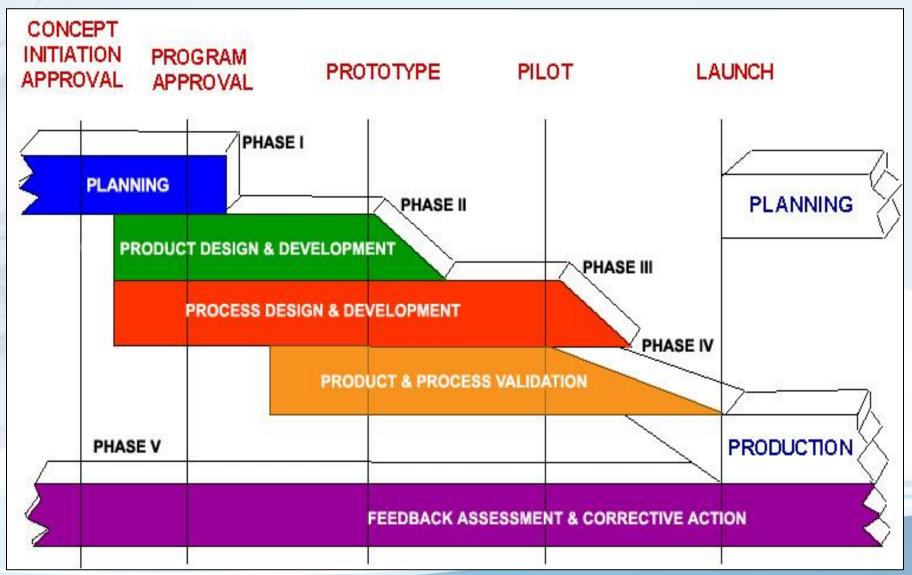
Learning Objectives

At the end of this chapter, you will be able to:

- Identify key APQP inputs used to develop the PFMEA
- Develop a Process Flow
 Diagram
- Define the term Special Characteristics

Chapter Agenda

- Phase II Inputs/Deliverables
- Phase III Deliverables
- Print Preparation
- Process Flow Diagram
 - Breakout Exercise 1
- Special Characteristics



Phase III: Design and Develop the Process

- Development of a comprehensive and effective manufacturing system and production process
- Manufacturing system must assure all customer requirements, needs and expectations are met
- Manufacturing system must support meeting all program goals and objectives

Alignment of APQP Processes

WWW.OMNEX.COM

Phase III Deliverables — PFMEA Inputs

- Packaging Standards and Specifications
- Product/Process Quality System Review
- Floor Plan Layout
- Process Flow Chart
- Characteristics Matrix
- Process Failure Mode and Effects Analysis (PFMEA)

- Pre-launch Control Plan
- Process Instructions
- Measurement System
 Analysis Plan
- Preliminary Process Capability Study Plan
- Management Support

Phase III Deliverables — PFMEA Inputs

- Process Design Feasibility
- Manufacturing Process Design
- Special Process
 Characteristics Review
- Manufacturing Layout
- Production Bill of Materials

- Pre-production Trial Runs
- Work Instructions
 - Process
 - Operator
 - Inspection
 - Set Up
- Production Control Plan
- Acceptance/Visual Standards

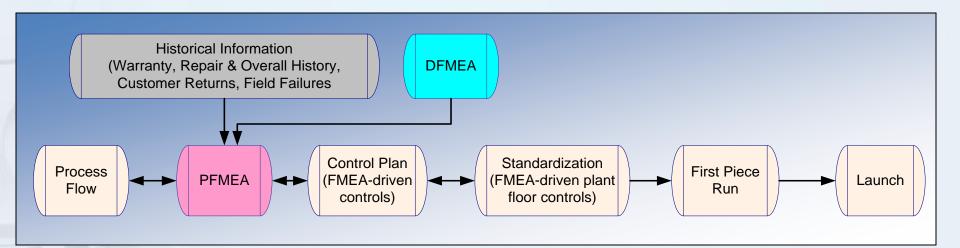
Team Feasibility Commitment

The APQP team must assess the feasibility of the proposed design.

Customer design ownership does not preclude the

supplier's obligation to assess design feasibility.

APQP 2nd Edition Appendix D


Is product adequately defined (application requirements, etc.) to enable feasibility evaluation? Can Engineering Performance Specifications be met as written? Can product be manufactured to tolerances specified on drawing? Can product be manufactured with Cpk's that meet requirements? Is there adequate capacity to produce product? Does the design allow the use of efficient material handling techniques? Can the product be manufactured without incurring any unusual: • Costs for capital equipment? • Costs for tooling? • Alternative manufacturing methods? Is statistical process control presently used on similar products?	roduct adequately defined (application requirements, etc.) to enable feasibility	
Can product be manufactured to tolerances specified on drawing? Can product be manufactured with Cpk's that meet requirements? Is there adequate capacity to produce product? Does the design allow the use of efficient material handling techniques? Can the product be manufactured without incurring any unusual: • Costs for capital equipment? • Costs for tooling? • Alternative manufacturing methods? Is statistical process control required on product?		
Can product be manufactured with Cpk's that meet requirements? Is there adequate capacity to produce product? Does the design allow the use of efficient material handling techniques? Can the product be manufactured without incurring any unusual: • Costs for capital equipment? • Costs for tooling? • Alternative manufacturing methods? Is statistical process control required on product?	a Engineering Performance Specifications be met as written?	
Is there adequate capacity to produce product? Does the design allow the use of efficient material handling techniques? Can the product be manufactured without incurring any unusual: • Costs for capital equipment? • Costs for tooling? • Alternative manufacturing methods? Is statistical process control required on product?	a product be manufactured to tolerances specified on drawing?	
Does the design allow the use of efficient material handling techniques? Can the product be manufactured without incurring any unusual: • Costs for capital equipment? • Costs for tooling? • Alternative manufacturing methods? Is statistical process control required on product?	a product be manufactured with Cpk's that meet requirements?	
Can the product be manufactured without incurring any unusual: • Costs for capital equipment? • Costs for tooling? • Alternative manufacturing methods? Is statistical process control required on product?	here adequate capacity to produce product?	
Costs for capital equipment? Costs for tooling? Alternative manufacturing methods? Is statistical process control required on product?	es the design allow the use of efficient material handling techniques?	
Costs for tooling? Alternative manufacturing methods? Is statistical process control required on product?	a the product be manufactured without incurring any unusual:	
Alternative manufacturing methods? Is statistical process control required on product?	Costs for capital equipment?	
Is statistical process control required on product?	Costs for tooling?	
A CONTRACTOR OF	Alternative manufacturing methods?	
Is statistical modess control presently used on similar products?	tatistical process control required on product?	
is summer process control process, used on summer products.	tatistical process control presently used on similar products?	
Where statistical process control is used on similar products:	ere statistical process control is used on similar products:	
Are the processes in control and stable?	Are the processes in control and stable?	
Are Cpk's greater than 1.33?	Are Cpk's greater than 1.33?	100

	Critical Item Assessment						Illustration													
Supplier /							Product Breakdown													
-	F	Risk Assessment Checklist																		
		Critical Item Assessment	Y/N	Y/N	Y/N	Y/N	Y/N	Y/N	Y/N	Y/N	Y/N	Y/N	Y/N	Y/N	Y/N	Y/N	Y/N			
	1)	Design Novelty																		
		Does an existing design have to be changed/modified?	Y	Y	Y	Y	N	N	N	Y		Y Y	N	Y	Y	Y	Y			
		Is this a new design/technology for the engineering team? Is this a new design/technology for the industry?	N N	N N	N N	Y N	N N	N N	N N	N N		Y N	N N	Y N	N N	Y N	N N			
	2)	Design Complexity	IN	IN	IN	N	N	N	N	IN		IN	IN	N	N	N				
	2)	Is the design a sub-system/component that requires critical / important functional interfaces with others?	Y	Y	Y	Y	Y	Y	Y	Y		Y	Y	Y	Y	Y	Y			
		Is the design a system made of made of various interfacing sub-systems/components?										Ŷ	N	Ŷ	N	Ŷ	Y			
-		Have significant manufacturing and/or field problems been experienced with this design / product?	Ν	Ν	Y	Y	Ν	Ν	Ν	Ν		Y	Ν	Ν	Y	Y				
		Are regulatory and customer requirements expected to change significantly during the design / project phase?	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν		Y	Ν	Ν	Ν	Y	Ν			
		Will the design goals (weight, materials, functional performance, etc.) and Reliability goals be difficult to achieve?	Ν	Ν	Y	Y	Y	Ν	Ν	Ν		Y	Ν	Y	Y	Y	Ν			
	3)	Experience of the Manufacturing Team																		
~		Does the production process require qualifications to meet customer, regulatory or other requirements?	Y I	Ν	Ν	Ν						Ν	Ν	Ν	Ν	Ν				
_		Have new manufacturing personnel to be introduced for the production?		Ν	Ν	Ν						Ν	Ν	Ν	Ν	Ν				
		Has a new or additional production line or facility to be started?	Ν	Ν	N	Y						Ν	Ν	Ν	Ν	N				
		Has a new production technology to be introduced?	N	N	N	N						Y	Y	Y	Y	Y				
	4	Are key people new to the manufacturing team?	N	N	Ν	Ν						Ν	Ν	Ν	Ν	Ν				
	4)	Performance of the Manufacturing Team		N	N							Ν	N	N	N	N	_			
		Are similar products produced with major quality problems? Are similar products produced with major logistic problems?		N	N	Ν						N	N	N	N	N				
-		Have major problems during start-up of project and/or launch of production have been experienced?		N	N	N						N	N	N	N	N				
		Is this the first project/production launch of a BT project for this manufacturing team?	Y	N	N	N						N	N	N	N	N				
		Will the quality goals (warranty, TGW's, scrap rates, rework rates, etc.) be difficult to achieve?	N	N	N	N						N	N	N	N	N				
	5)	Project Management																		
	,	Is the program timing compressed?	Y	Y	Y	Y	Y	Y	Y	Y		Y	Y	Y	Y	Y				
		Are the cost targets aggressive?	Y	Υ	Y	Y	Y	Y	Y	Y		Y	Y	Y	Υ	Y				

Process Review

- Improve process capability
- Resolve process feasibility issues
- Formulate control strategy based on PFMEA

Links to Design FMEA

- Process technology improvement
 using Machine FMEA and Process
 FMEA
- Update design rules
- Increase first time through capability of design
- Improve quality and productivity

The Process Design is Your Friend

Get to Know it Well

Copyright 2018 Omnex, Inc. All Rights Reserved.

FMEA Prerequisites

"If I had six hours to cut down a tree, I would spend four hours sharpening the axe."

– Abraham Lincoln

SCOPE OF ANALYSIS

Scope of the Analysis

Need to Know:

- What is included
- What is not included
 - That is, what is the scope of the analysis?

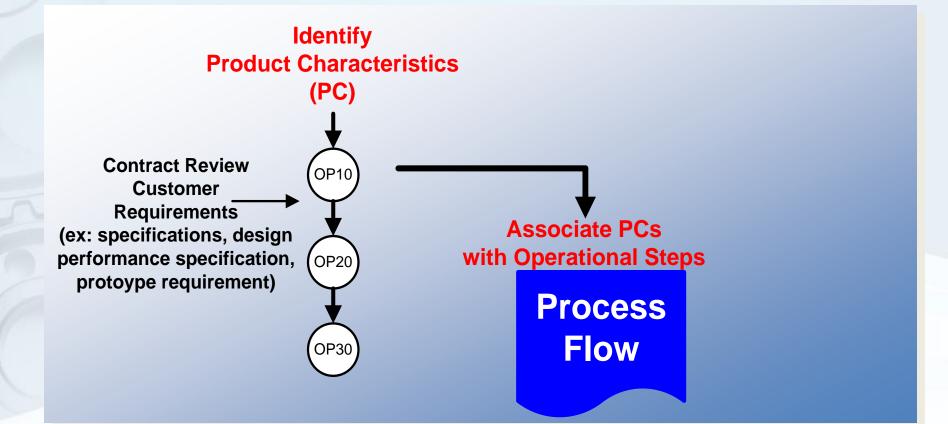
Tools

- Process Flow Chart
- Characteristics Matrix (optional)

PROCESS FLOW DIAGRAM

Prerequisite for Developing PFMEA

Process Flow Diagram

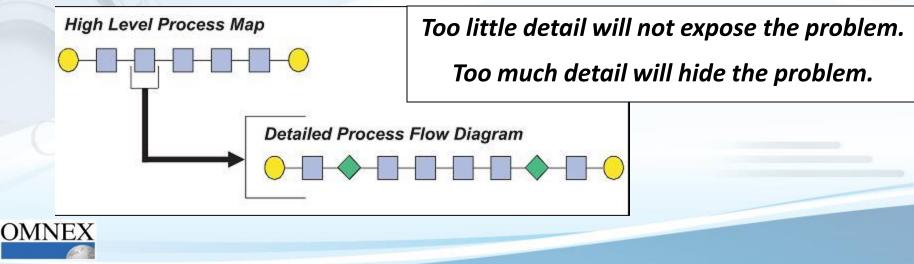

Objectives

- Diagram the entire process graphically from receiving to shipping
- Map requirements to operations / steps
- Identify potential sources of variation

A comprehensive Process Flow Diagram provides the foundation for the development of an effective Process FMEA, Control Plan and Work Instructions.

System Diagram

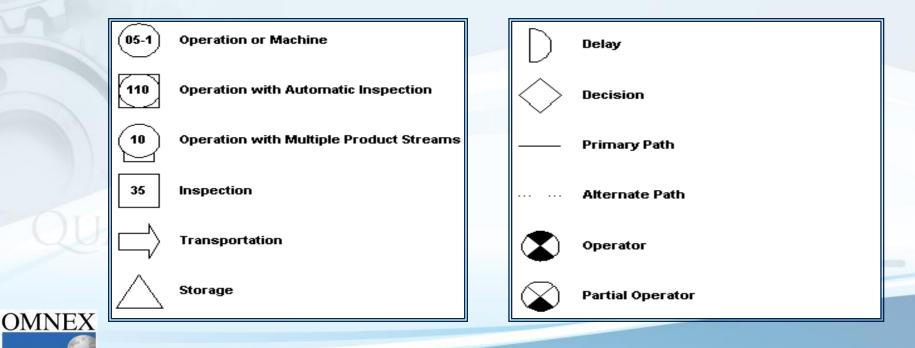
Elements of Process Flow Document


- Process Step / Process Function (description)
- Incoming Sources of Variation
- Operation Type and/or Symbol
- Product Characteristic I.D. O-M-N-E-X
 - Product characteristic description
- Process Characteristic I.D.
 - Process characteristic description
- Special Characteristics Identified

Preparing a Process Flow

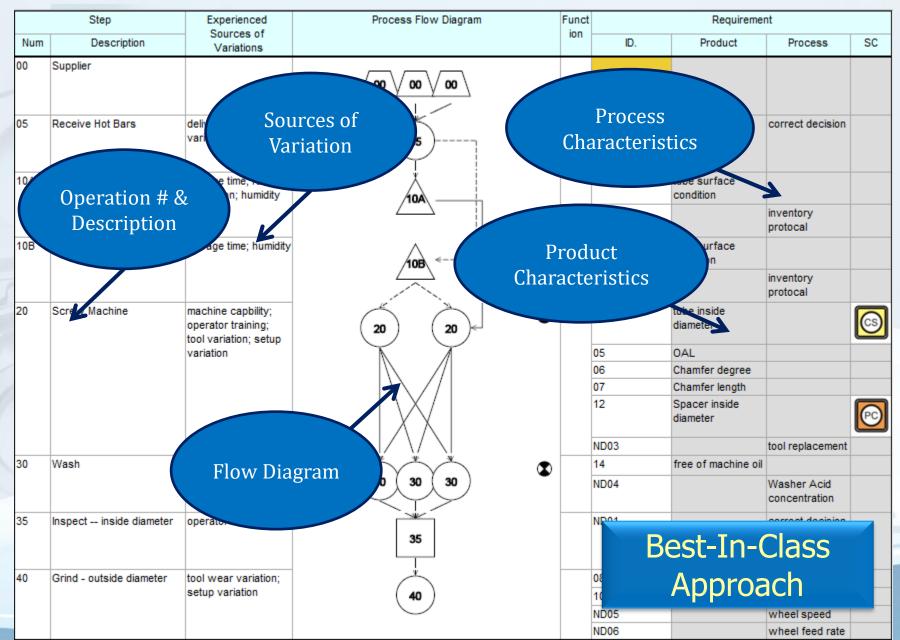
Process Step / Process Function (description) recommendations:

- Consecutive
- Consistent identification convention
- Consistent with other APQP documentation
- Appropriate level of detail


WWW.OMNEX.COM

Preparing a Process Flow

Process Flow Graphics


- Each process step should be represented by a symbol (icon)
- Some customers have specified a specific format or graphics but there is no single approach – be consistent
- Example symbols:

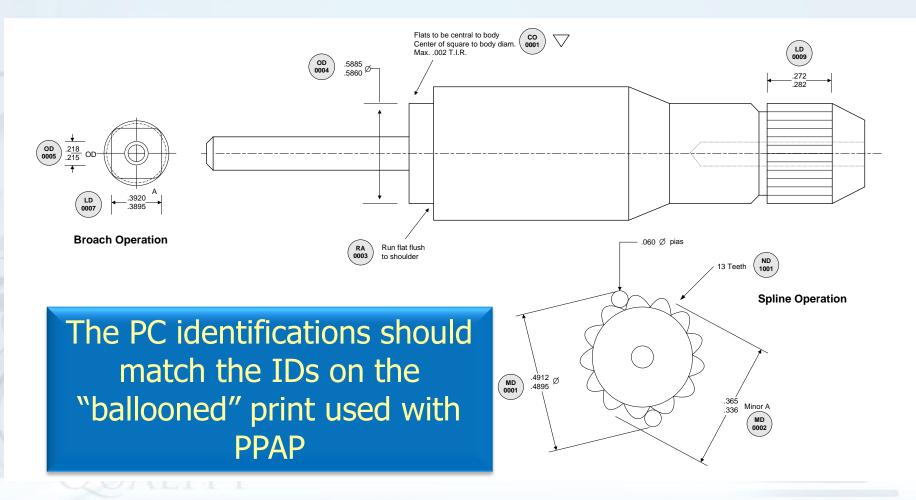
WWW.OMNEX.COM

Copyright 2018 Omnex, Inc. All Rights Reserved.

Manufacturing Process Flow Example

Process Flow as an Analytical Tool

Step		Experienced	Process Flow Diagram	Funct	Requirement						
Num	Description	Sources of Variations		ion	ID.	Product	Process	SC			
00	Supplier										
05	Receive Hot Bars	delivery timing variation	● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●		ND01		correct decision				
10A	store bars inside	storage time; rack protection; humidity			01	tube surface condition					
					ND02		inventory protocal				
10B	store bars outside	storage time; humidity			01	tube surface condition					
					ND02		inventory protocal				
20	Screw Machine	machine capbility; operator training; tool variation; setup	20 20		04	tube inside diameter		6			
		variation	\mathbf{x}		05	OAL					
					06	Chamfer degree					
					07	Chamfer length					
					12	Spacer inside diameter		60			
					ND03		tool replacement				
30	Wash	Variation in solution;			14	free of machine oil					
		solution life	30 30 30		ND04		Washer Acid concentration				
35	Inspect inside diameter	operator skill; gaging	35		ND01		correct decision				
40	Grind - outside diameter	tool wear variation;	, L		08	Finished surface					
		setup variation	(40)		10	Finished surface					
					ND05		wheel speed				
					ND06		wheel feed rate				


Preparing a Process Flow

Characteristics

- List all Product and Process Characteristics (requirements) for each process step.
 - "What is this step in the process supposed to do or produce?"
- It is recommended that each requirement be identified by a unique ID.
 - This should be consistent with the PPAP dimensional report IDs (Ballooned Drawing).

Print Preparation

Note: Number Product Characteristics with product identifications (PC IDs).

Copyright 2018 Omnex, Inc. All Rights Reserved.

Special Characteristics

Some companies require that all characteristics on the print be part of the process review.

- That is, all characteristics need to be included in the FMEA and Control Plan, and need to be studied for capability in PPAP.
- All types of measurement systems need to be studied for MSA as well.

<u>Control of characteristics</u> designated as safety critical, function critical, and customer interface need to follow the customer-specific requirements or organization requirements, whichever is most stringent.

Special characteristics are defined by IATF 16949

Special Characteristics — IATF 16949

Special Characteristics are product characteristics or manufacturing process parameters that can affect safety or compliance with regulations, fit, function, performance, requirements, or subsequent processing of product. (IATF 16949)

In Phase II the customer/APQP team affirm a **Preliminary List of Special Characteristics** for both the product and planned process that is used to create the product.

Special Characteristics — IATF 16949

Special Characteristics are product characteristics or manufacturing process parameters that can affect safety or compliance with regulations, fit, function, performance or subsequent processing of product. (IATF 16949)

Also see:

- 4.4.1.2 Product Safety
- 5.3.1 Organization Roles, Responsibilities and Authorities Supplemental
- 7.1.5.1.1 Measurement System Analysis
- 8.2.3.1.2 Customer-designated Special Characteristics
- 8.3.3.1 Product Design Input
- 8.3.3.3 Special Characteristics
- 8.3.5.1 Design and Development Outputs Supplemental
- 8.3.5.2 Manufacturing Process Design Output
- 8.4.3.1 Information for External Providers Supplemental
- 8.5.1.1 Control Plan
- 9.1.11 Monitoring and Measurement of Manufacturing Processes
- Appendix A: Control Plan A.2 Elements of the Control Plan

Special Characteristics — IATF 16949

8.3.3.3 Special Characteristics

The organization shall use a multidisciplinary approach to establish, document, and implement its process(es) to identify special characteristics, including those determined by the customer and the risk analysis performed by the organization...

- Include all special characteristics in the Control Plan.
- Include those designated by the customer.
- Comply with customer-specified definitions and symbols.
- Identify special characteristics on process control documents:
 - Drawings
 - FMEA (Risk Analyses)
 - Control Plan
 - Standard Work/Operator Instructions

Preparing a Process Flow

Experienced Sources of Variation (aka Incoming Sources of Variation)

- This column is used to identify those sources of variation that can affect the process step
- It is not intended to be a collecting of all possible sources of variation but only the dominant ones

Recommendation:

 Enter only those sources of variation that have caused problems – for this step – in the past

Breakout Exercise 1

Process Flow Diagram

Breakout Exercise 1: Process Flow Diagram

Handouts

• Description of a manufacturing process.

Instructions

- 1) Draw a Process Flow Diagram using the proposed manufacturing path.
 - Emphasize Blueprint IDs (ID) numbers 01, 02, 05 and 014. Do not spend much time on the other characteristics.
 - Use the enlarged 11x17 Process Flow sheet or flip chart.
 - Be prepare to present your team's Process Flow Diagram to the class; rotate the team spokesperson.
 - Recommend improvements to the proposed flow.

Be prepared to share and discuss your output with the class

Characteristic Matrix

What is It?

A matrix which...

- Displays relationships among requirements
- Identifies how one requirement can impact others
- Indicates where common tooling is used
- Aids in identifying the vital few

How to construct one:

- List all design or print (final or output) requirement (BPs) in order on top row of matrix
- List all operations in order by step # on left column of matrix
- Place relationship symbols in the interior cells of the matrix

Characteristic Matrix

٠	 Requirement changed Interrelated Requirements 												
L	- Special Cause - Locator - Clamp	Dimensions											
	- Clamp	1	2	3	4	5	6	7	8	9			
	OP 05	*											
Operations	OP 10	С	*	*	*								
era	0.0.00					*	*	*	*				
ð	OP 20		CL		L	ТА	ТА	ТА	ТА				
	OP 30		CL							*			

QUALITY

Chapter 2: APQP Inputs to the PFMEA — What We Covered

Learning Objectives

You should now be able to:

- Identify key APQP inputs used to develop the PFMEA
- Develop a Process Flow Diagram
- Define the term Special Characteristics

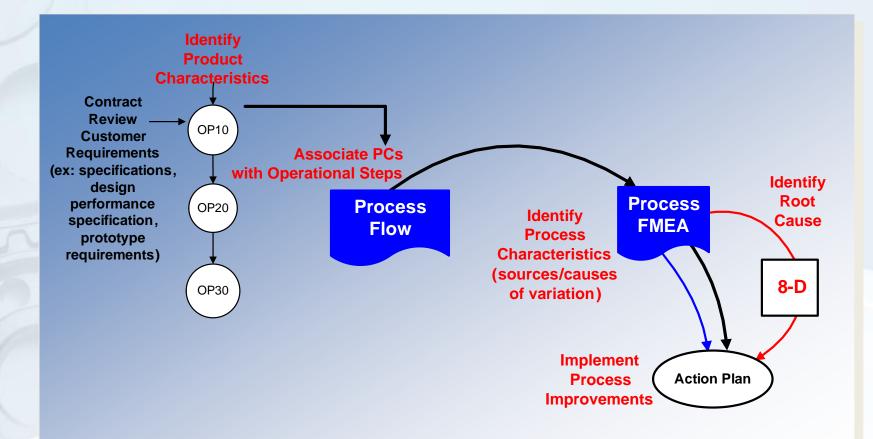
Chapter 3

Developing a Process FMEA

Chapter 3: Developing a PFMEA — What We Will Cover

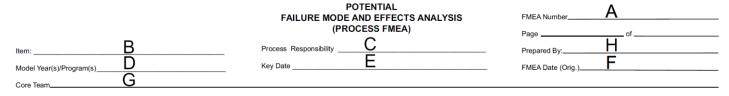
Learning Objectives

At the end of this chapter, you will be able to:


- Populate a basic PFMEA template
- Distinguish between Product and Process Characteristics
- Describe controls for prevention and detection

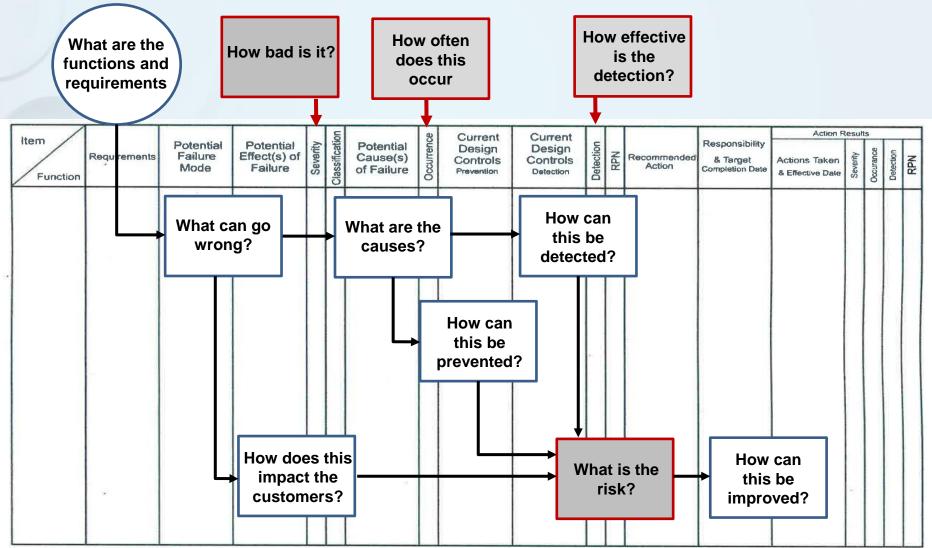
Chapter Agenda

- PFMEA Analytical Sequence
- Preparing the PFMEA
- Failure Mode and Effects
 - Breakout Exercise 2
 - Breakout Exercise 3
 - Controls Prevent / Detect
 - Breakout Exercise 4
- Risk Priority Number
- Classification Column
 - Breakout Exercise 5



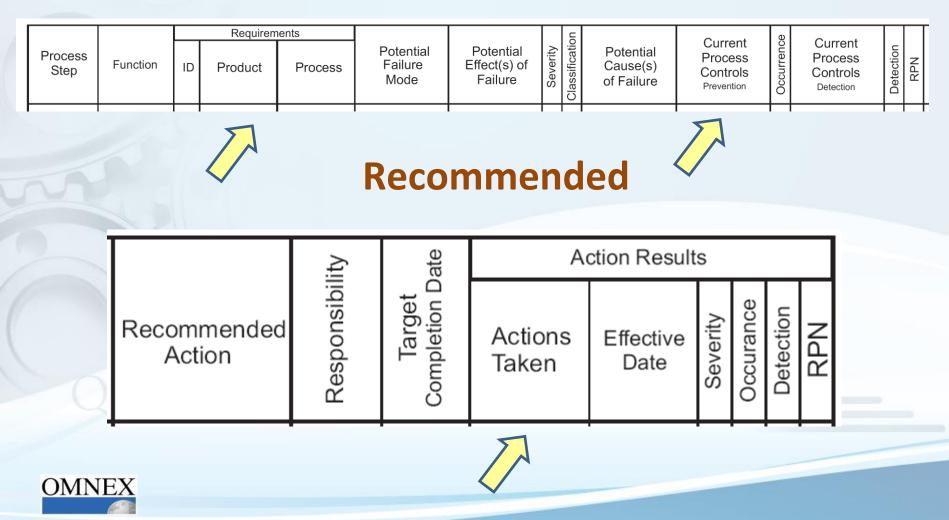
System Diagram

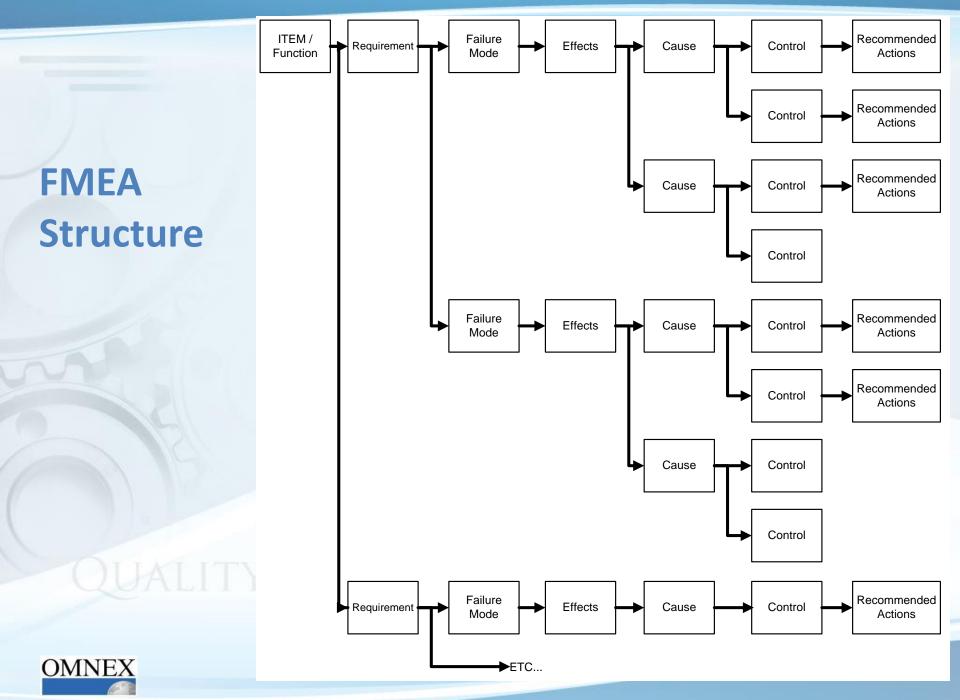
Process FMEA: Sample Form


Proces	ss Step		Requirem	ients				no		Current	e	Current	Γ			ity	Date	A	ction Results	5	_					
ID	Description	ID	Product	Process	Potential Failure Mode	Potential Effect(s) of Failure	Severity	Classificati	Potential Cause(s) of Failure	Process Controls Prevention	Occurrence	Process Controls Detection	Detection	RPN	Recommended Action	Responsibility	Target Completion D	Actions Taken	Effective Date	Severity	Occurance	RPN				
Op 70:	Manual application of wax inside door panel	LD 09	Cover inner door, lower surfaces with wax to specification thickness		Insufficient wax coverage over specified surface	Allows integrity breach of inner door panel Corroded interior	7		Manually inserted spray head not inserted far enough	None	8	Variables check for film thickness at start up Visual check	5	280	Add positive depth stop to sprayer	Bob Tate Mfg Eng	0X 10 15	Stop added sprayer checked online,	0X 10 15	7	2 (5 70				
				Consider interior for coverage. Iower door panels for coverage. Deteriorated life of door leading to: -Unsatisfactory appearance due to	ioi coverage.			Automate spraying	Bob Tate Mfg Eng	0X 12 15	Rejected due to complexity of different doors on same line															
		rust through p over time. • Impaired func	 over time. Impaired function of interior door 										Spray head clogged - Viscosity too high - Temperature too low - Pressure too low	Test spray at start-up and after idle periods and preventative maintenance program to clean heads	5	Variables check for film thickness at start up Visual check for coverage.	5	175	Use Design of experiments (DOE) on viscosity vs. temperature vs. pressure	D Cherry Mfg Eng	0X 10 15	Temp and Press Limits were determined Control charts show process is in control Cpk =1.85	0X 11 15	7	1 8	5 35
									Spray head deformed due to impact	Preventative maintenance programs to maintain heads	2	Variables check for film thickness at start up Visual check for coverage.	5	70	None											
5	5AM	IF	LE						Spray time insufficient	None	5	Lot sampling (visual) check coverage of critical areas	7	245	Install Spray timer.	C Czymak Maint		Automatic spray timer installed Control charts show process is in control Cpk =2.05	_0X 11 15 -	7	2 7	7 98				
					-	Excessive wax coverage over specified surface															T	Π				
a1	a2		а	3	b	С	d	е	f	g	h	i	j	k				— r	n	-	ו	+				

WWW.OMNEX.COM

Copyright 2018 Omnex, Inc. All Rights Reserved.


FMEA Analytical Sequence



Standard PFMEA Form

WWW.OMNEX.COM

WWW.OMNEX.COM

Process Step/Function Requirements

- For each step identified in the Process Flow chart include all deliverables (Product and Process Characteristic) as separate branches
- Best-in-Class: include the PC ID identifier for each deliverable

Preparing a Process FMEA

- List all known, obligatory and implied requirements from the Process Flow Chart
 - Requirements are Product Related
 - Requirements are Process Related
- For each requirement identify potential process related failure modes

How will the product fail to meet design intent if the requirement is not satisfied?

Process Failure Mode

- For each requirement How could the process fail to operate as defined in the requirement?
- The opposite of the requirement
- For product requirements non-conformance at the specific operation:
 - Why would the item be rejected?
 - How would the item not conform to the specification?
 - How would the process not conform to the specification?
 - What would the customer consider unacceptable?
 - How does the item fail to meet regulatory compliance?

Header Information

- A. FMEA Number
- B. System, Subsystem, or Component Name and Number
- C. Design Responsibility
- D. Model Year(s)/Program(s)
- E. Key Date
 - The initial FMEA due date, which should not exceed the scheduled production design release date
- F. FMEA Dates
 - The date the original FMEA was completed and the latest revision date
- G. Core Team
- H. Prepared By

Potential Failure Mode(s)

Traditional Approach: Brainstorm Failure Modes

Bent	Distorted	Porous
Binding	Eccentric	Rough
Blistered	Hole Missing	Short Circuited
Burred	Leaking	deatched
Brittle	Seeds comme	Tight
Blistered Burred Brittle Broken Corroded Cracked V Pical BI Deformed	-Not Res	Under Size
Corroded B	Melted	Warped
CrackedTypica	Misaligned	Sticky
Deformed	Omitted	Viscosity
Dirty	Open Circuited	Excessive TIR
Discolored	Oversize	Out of position

Potential Failure Mode(s)

- Recommended BIC: Analyze the requirements and use subject matter expertise to determine the failure modes.
- Failure mode is the opposite of the requirement. OSMSSINSESX
- If more than 4 5 failure modes are identified, then the requirement definition is too "vague"; i.e., not operationally defined.

Note: this requires that the "pre-work" is complete and comprehensive

Example

Process Function	Requirement	Failure Mode		
Operation 20:	Four screws	Less than four screws		
Attach seat cushion to	Specified screws	Wrong screw used (larger dia)		
track using a torque		Wrong screw used (smaller dia)		
gun	Assembly sequence: First screw in right front hole	Starting screw placed in any other hole		
	Screws fully seated	Screw not fully seated		
	Screws torqued to	Screw torqued too high		
	dynamic torque specification	Screw torqued too low		

Failure Mode is the opposite/absence of the requirement

Breakout Exercise 2

Starting the PFMEA Form

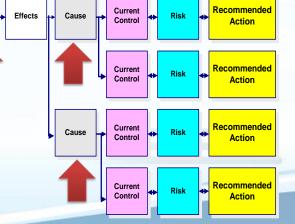
Breakout Exercise 2: Starting the PFMEA Form

Handouts

• Description of a manufacturing process.

Instructions

- 1) Complete the first six columns of the PFMEA, up to and including the Failure Mode column:
 - Do not complete any columns to the right of the Failure Mode column.
 - Include the process steps 20 and 50 and focus on the characteristics
 (ID) numbers 01, 02, 05 and 14.
 - Include any process characteristics identified in the Process Flow Diagram.
 - Use the recommended format or the Excel workbook provided by the instructor.


Be prepared to share and discuss your output with the class

Potential Cause(s)

- 1. Identify and List All the Requirements
 - Use information from the Process Flow Diagram
- 2. For Each Requirement
 - Identify Potential Process Related Failure Modes
- 3. For Each Failure Mode
 - Assess Potential Effects of Failures (later)
 - Identify the Cause(s)

We will return to Effects of Failure at the end, when evaluating Risk

Quality

Character

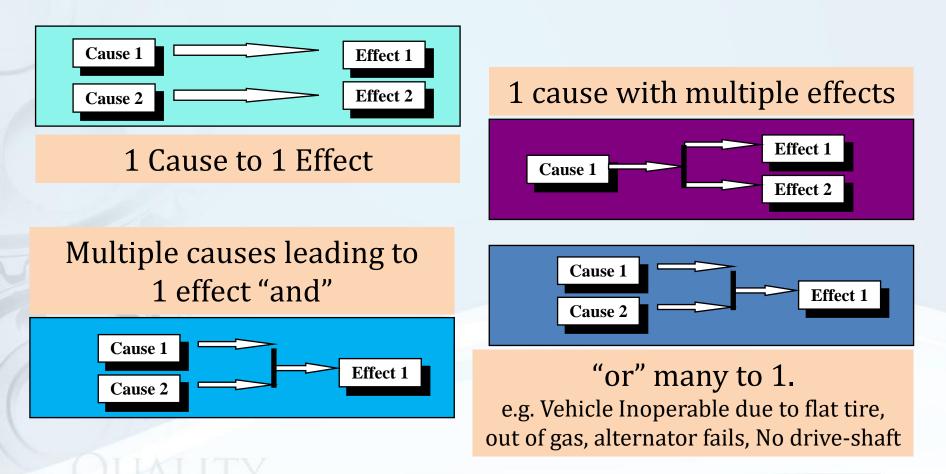
-istics

Product

Purpose

Potential

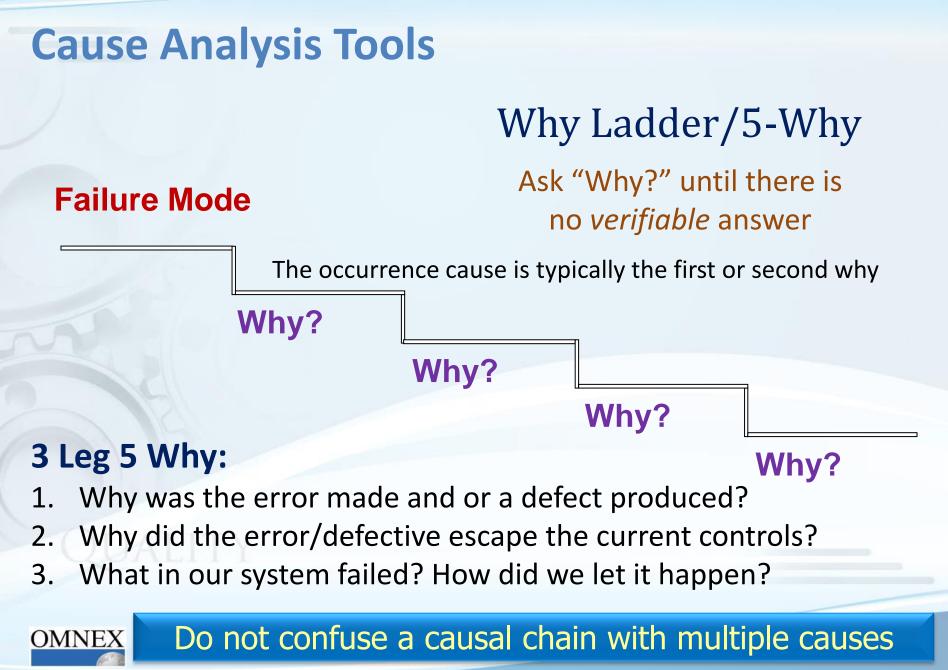
Failure


Potential Cause(s) of Failure

- Potential cause of failure is defined as how the failure mode could occur, described in terms of something that can be corrected or controlled
- The cause of failure is an "Error State" in a process parameter/characteristic (a "special cause")
- Each cause assignable to a failure mode should be listed and considered separately

Cause & Effect Relationships

C & E's may be related in different ways



Potential Causes of Failure

- Determined by the FMEA team using subject matter knowledge and experiences
- Potential causes can be determined directly or by understanding the Mechanisms of Failure:


MNEX	Not "Operator Error"
Inconsistent Set-up	Cracked Mold
Programming does not handle interactions	Inadequate Lighting
No Preventive Maintenance	Fatigue
Inadequate Venting Lubrication	No Standard Instructions
Wrong Tool	Wrong Material Used
Worn Tool	Missing Locator
Cold Weld	Worn Locator
Excessive Torque Applied	Inaccurate Measurement/Gage

WWW.OMNEX.COM

Cause Analysis Tools

Breakout Exercise 3

Potential Causes

OMNEX

Breakout Exercise 3: Potential Causes

Instructions

1) For each failure mode, determine potential causes of failure.

- Since there may be more than one cause for each failure mode, create a separate branch for each cause identified.
- Where data is lacking, use your personal experience, knowledge, and imagination to come up with potential causes, effects.

Be prepared to share and discuss your output with the class

Variation and Control Methods

- Strategy for Selecting Control Methods
 - Meet all customer requirements
 - Control Process rather than Product
 - Prevention rather than Detection
 - Targeting *Nominal* rather than *Limits*
 - Error-proofing rather than Inspection
 - At the process step rather than at the end of the line
 - Managing the control method
- Determine Control Method based on Sources of Variation

Process Controls

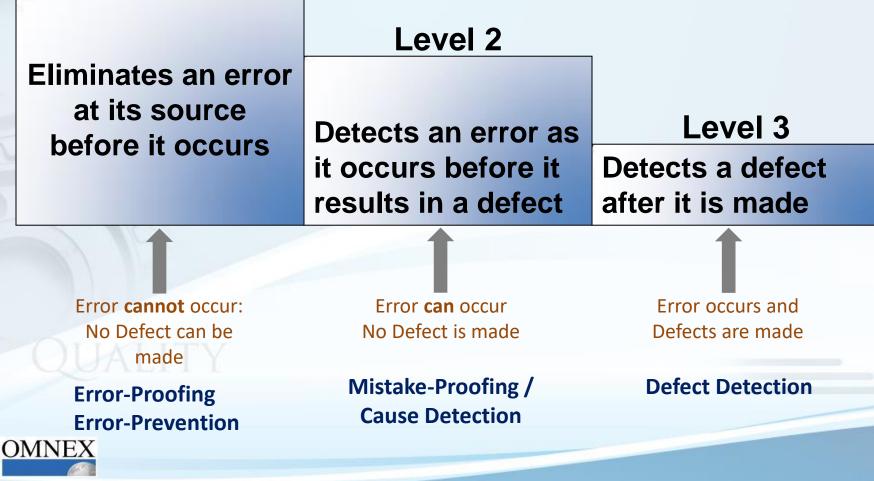
Controls should be based on the dominant source(s) of variation:

- Setup
- <u>Machine/Equipment</u>
- Maintenance
- Components and <u>Materials</u>
- <u>Man/Operator Competence</u>
- Standardized <u>Methods</u>
- Fixture/pallet
- Tooling
- <u>Measurement System</u>
- <u>Environment in which the process operates</u>

5M&E

Error and Mistake Proofing is Designed in...

Lvl	Туре	P or D	Action	Result
1	Error Proofing	Prevention	Eliminates the factors that cause an error – by design	Control in design; zero defects are made
2	Poka-Yoke 100% Inspection	Cause Detection	Detects a mistake/error cause in-station before it becomes a defect	100% Inspection – mistake proofing
3	Poka-Yoke 100% Inspection	Mistake Detection	Error/mistake is detected before leaving station / process	Auto stop when a mistake is detected


Design in controls and implementation: Prevention is the key.

Control Levels

Level 1

WWW.OMNEX.COM

Copyright 2018 Omnex, Inc. All Rights Reserved.


PFMEA Process Control Columns

Prevent the Cause

Error proofing in design

Prevent the cause of the failure mode

Detect the Cause

Detect the cause / mechanism of failure

Types of Mistake Proofing Devices

- 1. Sensors
- 2. Limit switches
- 3. Stop gates
- 4. Defect delivery chute
- 5. Odd-part-out isolation
- 6. Counters
- 7. Templates
- 8. Guides/reference point/interference pins
- 9. Sequence restriction
- 10. Critical condition indicator
- 11. Standardize and solve
- 12. Mistake-proof the mistake-proof device

Mistake proofing devices should be planned in the product and or process design stage, rather than implementing these after a problem occurs. The PFMEA can identify areas where Mistake Proofing (and Error Proofing) should be applied.

Other Examples of Preventive Controls

Туре	Control Methods
Preventive	Cycle based
Maintenance	Time based
Error Proofing	Product design
	Process design
	Fixture design
	Tooling sensing
	Equipment sensing
Other	Off-line set-up
	Set-up verification with SPC
	Process Control (SPC)

Occurrence

- Occurrence is an index linked to the likelihood that a specific cause will occur.
 - This has a relative meaning rather than an absolute value.
 - A consistent scale must be used to ensure continuity.
- Occurrence is directly related to identified special causes acting on the process.
 - Process capability and performance is considered only if the process is unacceptable.
 - Process capability (C_p, C_{pk}) is only valid for **stable** processes.
- Best-in-Class: identify whether the index is based on...
 - Consensus
 - Historical data on the same or similar processes
 - Process study (e.g. DOE) on the process

Preventing Controls have a direct impact on the Occurrence

PFMEA Occurrence Table –

Example

Likelihood of Failure	Criteria: Occurrence of Cause – PFMEA (Incidents per items/vehicles)	Rank
Very High	\ge 100 per thousand $ \ge$ 1 in 10	10
	50 per thousand 1 in 20	9
High	20 per thousand 1 in 50	8
	10 per thousand 1 in 100	7
	2 per thousand 1 in 500	6
Moderate	.5 per thousand 1 in 2,000	5
	.1 per thousand 1 in 10,000	4
Low	.01 per thousand 1 in 100,000	3
Low	≤ .001 per thousand 1 in 1,000,000	2
Very Low	Cause is eliminated through preventive control	1
OMNEX		

WWW.OMNEX.COM

Detection

Detection is the index associated with the best detection control shown in the current control column.

- When more than one control is identified, it is recommended that the detection ranking of each control be included as part of the description of the control.
- Record the value with the lowest (most effective) ranking.
- Only detection controls are ranked and recorded.
- Remember: Prevention controls only affect occurrence.

Examples of Detection Controls

Туре	Control Methods
Audits	Dock Audits
	Process Parameter
Checking	Operator checks
	100% automatic gauging
	Visual Inspection
Inspection	In-process
	Final (dimension, functional)
Other	Mistake proofing
	Set-up validation (SPC)
	Lab test
	Alarms

Opportunity for Detection			Rank	Likelihood of Detection
No detection opportunity	No current process control; Cannot detect or is no analyzed.		10	Almost Impossible
Not likely to detect at any stage	Failure Mode and/or Error (Cause) is not easily detected (e.g., random audits).		9	Very Remote
Problem Detection Post-Processing	Failure Mode detection post-processing by operator through visual/tactile/audible means.		8	Remote
Problem Detection at Source	Failure Mode detection in-station by operator through visual/tactile/audible means or post-processing through use of attribute gauging (go/no-go, manual torque check/clicker wrench, etc.)		7	Very Low
Problem Detection Post-Processing	Failure Mode detection post-processing by operator through use of variable gauging or in-station by operator through use of attribute gauging (go/no-go, manual torque check/clicker wrench, etc.)		6	Low

Opportunity for Detection	Criteria: Likelihood of Detection by Process Control	Rank	Likelihood of Detection
Problem Detection at Source	Failure Mode or Error (Cause) detection in-station by operator through use of variable gauging or by automated controls in-station that will detect discrepant part and notify operator (light, buzzer, etc.). Gauging performed on setup and first-piece check (for set-up causes only).	5	Moderate
Problem Detection Post-Processing	Failure Mode detection post-processing by automated controls that will detect discrepant part and lock part to prevent further processing.	4	Moderately High
Problem Detection at Source	Failure Mode detection in-station by automated controls that will detect discrepant part and automatically lock part in station to prevent further processing.	3	High
Error Detection and/or Problem Prevention	Error (Cause) detection in-station by automated controls that will detect error and prevent discrepant part from being made.	2	Very High
Detection not Applicable; Error Prevention	Error (Cause) prevention as a result of fixture design, machine design or part design. Discrepant parts cannot be made because item has been error-proofed by process/product design.	1	Almost Certain

Example

Process Function	Requirement	Failure Mode	
Operation 20:	Four screws	Less than four screws	
Attach seat cushion to	Specified screws	Wrong screw used (larger dia)	
track using a torque		Wrong screw used (smaller dia)	
gun	Assembly sequence: First screw in right front hole	Starting screw placed in any other hole	
	Screws fully seated	Screw not fully seated	
	Screws torqued to	Screw torqued too high	
	dynamic torque specification	Screw torqued too low	

Failure Mode is the opposite/absence of the requirement

Requirement	quirement Failure Cause		Prevention Control	Detection Control		
Screws torqued until fully seated	Screw not fully seated	Nut runner not held perpendicular to work surface by operator	Operator training	Angle sensor included in nut runner to detect cross-threading not allowing part to be removed from fixture until value is satisfied		
Screws torqued to dynamic torque specification	Screw torqued too high	Torque setting set too high by non- set-up personnel	Password protected control panel (only set-up personnel have access)	Torque validation box included in set-up procedure to validate setting prior to running		
		Torque cetting cet	Training of set up	Torque validation box included		
		too high by set-up personnel	personnel	in set-up procedure to validate setting prior to running		
			Settings added to set-up instructions			
	Screw torqued too low	Torque setting set too low by non- set-up personnel	Password protected control panel (only set-up personnel have access)	Torque validation box included in set-up procedure to validate setting prior to running		
		Torque setting set too low by set-up personnel	Training of set-up personnel	Torque validation box included in set-up procedure to validate setting prior to running		
			Settings added to set-up instructions			

Breakout Exercise 4

Process Controls

Breakout Exercise 4: Process Controls

Instructions

- For each cause of failure, identify current process controls, placing them, as appropriate, in the Prevention and Detection columns.
 - Note that a current process control which operates by detecting the presence of the Cause is listed in the detection column.

Be prepared to share and discuss your output with the class

Breakout Exercise 4: Process Controls

Referring to the previous index tables:

- 1) Determine the likelihood of occurrence of the failure mode due to that cause, considering the effect of any preventive process control.
 - Since there is a greater or lesser likelihood of occurrence for each cause, provide a separate occurrence rating for each.
- 2) Rate each Detection control in the control column. Select the rating for the most effective (lowest number) control.
 - Note that the same controls may operate for different causes or failure modes, and are repeated.

RISK ANALYSIS

Risk Analysis

- 1. Identify and List All the Requirements
 - Use information from the Process Flow Diagram
- 2. For Each Requirement
 - Identify Potential Process Related Failure Modes
- 3. For Each Failure Mode
 - Assess Potential Effects of Failures
 - Identify the Cause(s)

Let's go back and get the severity for the Risk Analysis

EFFECTS OF FAILURE

Effect of a Failure Mode

- Answers the "So What" question.
- Describes the effect of the failure mode on the customer including:
 - Vehicle operation
 - End user
 - Government regulation
 - Operator safety
 - Next user
 - Downstream users
 - Machines/equipment

Typically available from the related DFMEA

Typical Effects – Customer Dissatisfaction

- Inconsistent Appearance
- Gear Noise "Singing gears"
- Customer Vision Impaired
- Cannot Fasten
- Discoloration
- Delay in presenting information
- Water Enters Vehicle

- Loses Power
- Fading
- Will Not Lock or Hold
- Cannot Read Sensor
- Uneven Fit
- Sticks in Mold
- Squeaks, Rattle, Noise
- **Note:** Explain with sufficient detail on subject, conditions, and location so severity can be evaluated and appropriate actions taken. The better the description/detail, the more use the FMEA will have in problem solving activities.

The language used in FMEAs should be as specific as possible when describing an item (failure mode, cause, etc.) and not extend or extrapolate beyond the team's level of understanding as to what the failure effects may be.

Requirement	Failure Mode	Effect	
Four screws	Fewer than four screws	End User: Loose seat cushion and noise. Manufacturing and Assembly: Stop shipment and additional sort and rework due to affected portion.	
Specified screws	Wrong screw used (larger dia.)	Manufacturing and Assembly: Unable to install screw in station.	
Assembly sequence: First screw in right front hole	Screw placed in any other hole	Manufacturing and Assembly: Difficult to install remaining screws in station.	
Screws fully seated	Screw not fully seated	<i>End User:</i> Loose seat cushion and noise. <i>Manufacturing and Assembly:</i> Sort and rework due to affected portion.	

Severity of Effect

Severity is the rank associated with the most serious effect of the failure mode on the external (Product) and internal (Process) customer:

- Assess the severity of each effect by team consensus using the ranking table, in the Effects column
- Consider Customer Effect and Manufacturing/Assembly Effects

Recommendation: Enter a severity for each effect; place highest rating in the Severity column

Effect	Criteria: Severity of Effect on Product (Customer Effect)	Rank	Effect	Criteria: Severity of Effect on Process (Manufacturing/Assembly Effect)
Failure to Meet Safety and/or	Potential failure mode affects safe vehicle operation and/or involves noncompliance with government regulation without warning.	10	Failure to Meet Safety and/or	May endanger operator (machine or assembly) without warning.
Regulatory Requirements	Potential failure mode affects safe vehicle operation and/or involves noncompliance with government regulation with warning.	9	Regulatory Requirements	May endanger operator (machine or assembly) with warning.
Loss or	Loss of primary function (vehicle inoperable, does not affect safe vehicle operation).	8	Major Disruption	100% of product may have to be scrapped. Line shutdown or stop ship.
Degradation of Primary Function	Degradation of primary function (vehicle operable, but at reduced level of performance).	7	Significant Disruption	A portion of the production run may have to be scrapped. Deviation from primary process including decreased line speed or added manpower.
Loss or	Loss of secondary function (vehicle operable, but comfort / convenience functions inoperable).	6	Moderate	100% of production run may have to be reworked off line and accepted.
Degradation of Secondary Function	Degradation of secondary function (vehicle operable, but comfort / convenience functions at reduced level of performance).	5	Disruption	A portion of the production run may have to be reworked off line and accepted.
	Appearance or Audible Noise, vehicle operable, item does not conform and noticed by most customers (> 75%).	4	N	100% of production run may have to be reworked in station before it is processed.
Annoyance	Appearance or Audible Noise, vehicle operable, item does not conform and noticed by many customers (50%).	3	Moderate Disruption	A portion of the production run may have to be reworked in-station before it is processed.
	Appearance or Audible Noise, vehicle operable, item does not conform and noticed by discriminating customers (< 25%).	2	Minor Disruption	Slight inconvenience to process, operation, or operator
No effect	No discernible effect.	1	No effect	No discernible effect.

RPN = severity X occurrence X detection

Copyright 2018 Omnex, Inc. All Rights Reserved.

Action Priority

- The initial focus of the team should be oriented towards failure modes with the highest severity rankings.
 - When the severity is 9 or 10, it is imperative that the team must ensure that the risk is addressed through existing design controls or recommended actions (as documented in the FMEA).
- The priority of an action should be based on the discussions among the team considering the concerns and product/process knowledge as well as based on information captured by the FMEA process.

Risk Evaluation

Risk Priority Number (RPN) RPN is calculated as:

RPN = Severity x Occurrence x Detection

- RPN is used to rank relative risk associated with specific failure modes.
- Corrective action is taken thereafter to reduce the RPN, as appropriate.

Cautions

"The use of an RPN threshold is NOT an acceptable practice for determining the need for recommended actions."

Source: FMEA Fourth Edition, 2008

- There is no RPN value that requires mandatory action.
- Applying thresholds assumes that RPNs are an accurate measure of relative risk (which they often are not) and that continuous improvement is not required (which it is).

RPN Assessment Weighting

S	0	D	RPN
7	2	5	70
2	7	5	70
5	7	2	70
7	5	2	70
2	5	7	70

S	0	D	RPN
10	2	2	40
3	10	4	120
2	5	10	100

Copyright 2018 Omnex, Inc. All Rights Reserved.

Alternatives / Additions

- SO (S x O) ... defined as **RISK**
- SOD
- SD

S	0	D	RPN	SxO	SOD	SO	SD	
7	7	3	147	49	70703	707	703	Very
7	3	7	147	21	70307	703	707	- Different
3	7	7	147	21	30707	307	307	Scenarios

Equal RPN Values

Recommended Actions

- Recommended Actions
 - Determining Actions
 - Creative Process
 - Provide Solution to Cause of Failure
- Responsibility and Completion Date
- Actions Taken
- Resulting RPN

If no action is currently planned, enter "none at this time"

Recommended Actions

Intent of any recommended action is to reduce any one or all of the occurrence, severity, and/or detection rankings.

To Reduce:	Consider This Action:	To Accomplish this:
Severity	Change the design (product or process)	Eliminate or reduce the severity of the failure mode
Occurrence	Change the process	Prevent the cause or failure and its effect from occurring
Detection	Add to or improve evaluation techniques	Detect that the cause has occurred and take corrective action Detect that the failure mode has occurred and correct

If no actions are recommended, indicate "none at this time"

Recommended Actions

As the living document is updated to reflect activity in the Recommended Actions columns, consider changes that will:

- Eliminate the cause of the failure mode
- Eliminate the failure mode
- Mitigate the effect
- Change the design related to the product characteristic (geometry, material, etc.)
- Change the effect of failure mode on the product performance

Classification – Very Important

- This column is used to classify any special product or process characteristics and to tie them to CONTROLS.
- This column may also notify the design team of high priority failure modes for engineering assessment.
- Indicate the differences between product characteristics and final product attributes.
- Uses customer and company-designated special characteristics.
- Suppliers may use their own identification designation.

Breakout Exercise 5

Effects, Severity and Action Plans

Breakout Exercise 5: Effects, Severity and Action Plans

Instructions

- 1) For each failure mode identified:
 - List the most probable likely effects.
 - Referring to the Severity index table, determine an appropriate severity rating for each effect.
 - In the S column, for each failure mode enter the highest (most severe) effect from among those identified.
 - Identify what logical action plans should be initiated and what the resultant indices would be after the action was completed.

Be prepared to share and discuss your output with the class

Chapter 3: Developing a PFMEA — What We Covered

Learning Objectives

You should now be able to:

- Populate a basic PFMEA template
- Distinguish between Product and Process Characteristics
- Describe controls for prevention and detection

Chapter Agenda

- PFMEA Analytical Sequence
- Preparing the PFMEA
- Failure Mode and Effects
 - Breakout Exercise 2
 - Breakout Exercise 3
- Controls Prevent / Detect
 - Breakout Exercise 4
- Risk Priority Number
- Classification Column
 - Breakout Exercise 5

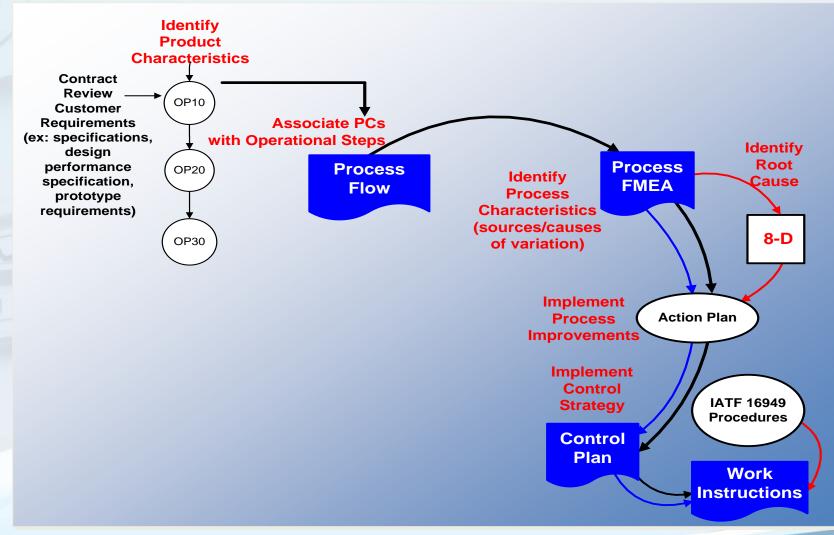
Chapter 4

Developing a Control Plan

Chapter 4: Developing a Control Plan — What We Will Cover

Learning Objectives

At the end of this chapter, you will be able to: O*M*N*E*X*


- Explain the purpose of a Control Plan
- Populate a generic Control Plan

Chapter Agenda

- What is a Control Plan?
- Control Plan Header
 Information
- Control Plan Fields
 - Breakout Exercise 6

System Diagram

What is a Control Plan?

- Written description of systems for controlling product and process variation in manufacturing and assembly processes
- Contract between the supplier and the customer
- Summarizes entire control strategy for a system, subsystem or component
- Basis for development of process work instructions—not a substitute for it!
- Identifies statutory, regulatory, customer, supplier, special and critical characteristics

Control Plan

- The PFMEA (current process controls) describes the methods which will be used to control the process from Receiving to Shipping.
- The Control Plan provides the details of those controls.
- Control Plan is maintained and used throughout the product life cycle.
- A Control Plan may apply to a group or family of products produced by the same process.

Production Control Plan: Inputs

The data or inputs that will be used to develop the Control Plan may include some or all of the following. This data will be reviewed by the multidisciplinary team during their meeting.

Primary Source

- Process FMEA
- Pre-launch Control Plan
- Production Trial Run

Supporting Information

- APQP and Control Plan AIAG Reference Manual
- Customer Prints
- In-Process Prints
- Customer and Internal Specifications
- Inspection Plans and Sampling Frequency

- Work Instructions for similar parts or processes
- List of Special Characteristics
- List of Machines, Tools, Jigs or Fixtures
- List of Gauging or Equipment for each measurement, test or inspection
- Performance Testing Requirements
- Design Reviews
- Optimization Data
- Process Flow Chart
- System and/or Design FMEA

Sample Form

		Control Plan													
	Prototype	Pre-launch		Product	tion	Key Cont	tact/Phone					Date (Or	riginal)	Date (Revi	ised)
Control Plan Number					1										
Part Number/Latest change Level			Core Tea	Core Team C				Custome	Customer Engineering Approval/Date (If Required)						
Part Name/Description			Supplier	Supplier/Plant Approval/Date				Custome	Customer Quality Approval/Date (If Required)						
Supplier/Plant Supplier Code			Other Ap	pproval/Date (If Requir	red)				Other A	pproval/Date (If Required)					
Cha			Characteri	racteristics Methods			hods	s							
Part/Process Process Name/				Special Characteristic	Product/Process Evaluation		Sai	mple			Reaction Plan				
	nber Operation Descrip		Tool and/ or	Technique	No.	Product	Process	Class	Specification	Measurement	Size	Frequency	Control Method		

Tolerance

Technique

"An alternate format may be used as long as it contains the same information, as a minimum"—APQP 2nd Edition

Control Plan

Part/Process Number

Process Name / Operation Description

Machine, Device, Jig, Tools For Manufacturing

(15)	(16)	(17)
Part/ Process Number	Process Name/ Operation Description	Tool and/or Technique
20	Turn Profiles and Bore Inside Diameters on Screw Machines	Acme Screw Machines 101 &102 C002 Cutoff Tool F001 Form Tool S001 Shave Tool
Fro	m PFD and PFMEA	
		CP only

Control Plan

Characteristics

- Number
- Product
- Process
- Special / Classification
 - Customer specific, when required

	Characteri	stics	21
(18) No.	(19) Product	20 Process	Special Characteristic Class
04	Spacer ID		D
05	OAL		D
06	Chamfer Degree		
07	Chamfer Length		
		Tool Replacement	
		PFD ai FMEA Speed Control	nd

Identification of Special Characteristics: Is Action Required?

Classification	To Indicate	Criteria	Designation
CC	Critical Characteristic	Severity = 9 or 10	Required
SC	Significant Characteristic	Severity = 5 to 8 and Occurrence = 4 to 10	Candidate
OS	Operator Safety	Severity = 9 or10	Required

Use customer specific symbols/designations as required

Specifications

What the characteristic will be controlled to; information can be found in:

- Drawings / Prints
- Specifications / Tolerances
- Standards
- CAD Data
- Manufacturing / Assembly Standards

Control Plan

Control Method

• From the PFMEA

Sample Size

How many

Frequency

• How often

Evaluation / Measurement Technique • By what means

Evaluation 23	San	nple 24	25
Measurement Technique	Si ze	Frequency	Control Method
Inside mic IM001	6 pcs	At Setup minimum	First Piece inspection & Documented on First Artide Checksheet
Inside mic IM001	6 pcs	Every 300 Pieces & at Tool Change	Xbar - R
Hgt Stand GV002	6 pcs	At Setup minimum	First Piece inspection & Documented on First Artide Checksheet
Hgt Stand GV002	6 pcs	Every 300 Pieces & at Tool Change	Sample Inspection and Documented on Inprocess Checksheet
Comparator C001	6 pcs	At Setup minimum	First Piece inspection & Documented on First Artide Checksheet
Comparator C001	6 pcs	Every 300 Pieces & at Tool Change	Sample Inspection and Documented on Inprocess Checksheet
Comparator C001	6 pcs	At Setup minimum	From PFMEA
Comparator C001	6 pcs	Every 300 Pieces & at Tool Change	Sai Inprocess checksheet
Tool Schedule	100%	As Indicated by CRT Display Lights	Tool Change Verification Log
		1 Test	Record Result on Setup Checksheet
Meter	only		
Diagnostic Test 002	At Setup	1 Test	Record Result on Setup Checksheet

Control Method

Determining the sample size and frequency:

- The "how many" and "how often"
- Depends on:
 - The importance / impact level (severity) of the failure mode
 - The control factors the dominant source(s) of variation
 - The capability and performance of the process
 - Statistical validity of sampling plan

Control Method must be consistent with PFMEA "Current Controls"

Process Capability Studies: Indices

Robustness of Control Strategy is Based on Risk and Capability

Results	Interpretation	Control Intensity
Index Value > 1.67	The process currently meets customer requirements. After approval, begin production and follow Control Plan.	Low
1.33 ≤ (Index Value) ≤ 1.67	The process is currently acceptable but may require some improvement. Contact your customer and review results of the study. This will require changes to the Control Plan, if not improved prior to the start of volume production.	High
Index Value < 1.33	The process does not currently meet the acceptance criteria. Contact the appropriate customer representative for a review of the study results.	Fix

Note: Indices can only be used for stable processes

Copyright 2018 Omnex, Inc. All Rights Reserved.

Control Method Details

Determine the Evaluation / Measurement System that should be used.

- For equipment-based evaluation, identify the measurement system.
 - For equipment uniquely designed for the product, include identification name and/or number.
- For non-equipment based evaluation, identify the methodology, instructions, aids, etc. as appropriate.

Reaction Plans

- Reaction plan specifies what to do when:
 - Failure occurs
 - Process goes out of control
 - Process improves
 - The extent of operator authority
- Typical reactions:
 - Contain
 - Investigate
 - Record (good and bad incidents)
 - Problem Solving and verification of Corrective and Preventive Actions
 - Re-verify product

Nonconforming Outputs – IATF 16949

The following clauses from IATF 16949:2016 reference control of nonconforming outputs:

- 8.7 Control of Nonconforming Outputs
 - 8.7.1 [No Title]
 - 8.7.1.1 Customer Authorization for Concessions
 - 8.7.1.2 Control of Nonconforming Product Customer-specified Process
 - 8.7.1.3 Control of Suspect Product
 - 8.7.1.4 Control of Reworked Product
 - 8.7.1.5 Control of Repaired Product
 - 8.7.1.6 Customer Notification
 - 8.7.1.7 Nonconforming Product Disposition

Breakout Exercise 6

Creating a Control Plan

Breakout Exercise 6: Creating a Control Plan

Handouts:

Blank Control Plan Form

Instructions

- Create a Production Control Plan for the XJ-770 part, operation OP 20, characteristic ID 14 and OP 50, ID 02.
- Use the data provided from the previous breakouts as inputs.
- Focus on:
 - Prevention rather than detection.
 - Process rather than product.
 - Enough but not too much.
- Be prepared to report to the class:
 - The recommended actions your team has developed.
 - The reasons leading to the actions.

Chapter 4: Developing a Control Plan — What We Covered

Learning Objectives

You should now be able to:

- Explain the purpose of a Control Plan
- Populate a generic Control
 Plan

Chapter Agenda

- What is a Control Plan?
- Control Plan Header
 Information
- Control Plan Fields
 - Breakout Exercise 6

Thank You!

Questions?

info@omnex.com 734.761.4940

Copyright 2018 Omnex, Inc. All Rights Reserved.

Appendix

Tables

STATE:

Effect	Criteria: Severity of Effect on Product (Customer Effect)	Rank	Effect	Criteria: Severity of Effect on Process (Manufacturing/Assembly Effect)
Failure to Meet Safety and/or	Potential failure mode affects safe vehicle operation and/or involves noncompliance with government regulation without warning.	10	Failure to Meet Safety and/or	May endanger operator (machine or assembly) without warning.
Regulatory Requirements	Potential failure mode affects safe vehicle operation and/or involves noncompliance with government regulation with warning.	9	Regulatory Requirements	May endanger operator (machine or assembly) with warning.
Loss or	Loss of primary function (vehicle inoperable, does not affect safe vehicle operation).	8	Major Disruption	100% of product may have to be scrapped. Line shutdown or stop ship.
Degradation of Primary Function	Degradation of primary function (vehicle operable, but at reduced level of performance).	7	Significant Disruption	A portion of the production run may have to be scrapped. Deviation from primary process including decreased line speed or added manpower.
Loss or	Loss of secondary function (vehicle operable, but comfort / convenience functions inoperable).	6	Moderate	100% of production run may have to be reworked off line and accepted.
Degradation of Secondary Function	Degradation of secondary function (vehicle operable, but comfort / convenience functions at reduced level of performance).	5	Disruption	A portion of the production run may have to be reworked off line and accepted.
	Appearance or Audible Noise, vehicle operable, item does not conform and noticed by most customers (> 75%).	4	N	100% of production run may have to be reworked in station before it is processed.
Annoyance	Appearance or Audible Noise, vehicle operable, item does not conform and noticed by many customers (50%).	3	Moderate Disruption	A portion of the production run may have to be reworked in-station before it is processed.
	Appearance or Audible Noise, vehicle operable, item does not conform and noticed by discriminating customers (< 25%).	2	Minor Disruption	Slight inconvenience to process, operation, or operator
No effect	No discernible effect.	1	No effect	No discernible effect.

RPN = severity X occurrence X detection

Copyright 2018 Omnex, Inc. All Rights Reserved.

PFMEA Occurrence Table –

Example

Likelihood of Failure	Criteria: Occurrence of Cause – PFMEA (Incidents per items/vehicles)	Rank
Very High	\ge 100 per thousand $ \ge$ 1 in 10	10
	50 per thousand 1 in 20	9
High	20 per thousand 1 in 50	8
	10 per thousand 1 in 100	7
	2 per thousand 1 in 500	6
Moderate	.5 per thousand 1 in 2,000	5
	.1 per thousand 1 in 10,000	4
Low	.01 per thousand 1 in 100,000	3
Low	≤ .001 per thousand 1 in 1,000,000	2
Very Low	Cause is eliminated through preventive control	1
OMNEX		

WWW.OMNEX.COM

Opportunity for Detection	Criteria: Likelihood of Detection by Process Control	Rank	Likelihood of Detection
No detection opportunity	No current process control; Cannot detect or is no analyzed.	10	Almost Impossible
Not likely to detect at any stage	Failure Mode and/or Error (Cause) is not easily detected (e.g., random audits).	9	Very Remote
Problem Detection Post-Processing	Failure Mode detection post-processing by operator through visual/tactile/audible means.	8	Remote
Problem Detection at Source	Failure Mode detection in-station by operator through visual/tactile/audible means or post-processing through use of attribute gauging (go/no-go, manual torque check/clicker wrench, etc.)	7	Very Low
Problem Detection Post-Processing	Failure Mode detection post-processing by operator through use of variable gauging or in-station by operator through use of attribute gauging (go/no-go, manual torque check/clicker wrench, etc.)	6	Low

Opportunity for Detection	Criteria: Likelihood of Detection by Process Control	Rank	Likelihood of Detection
Problem Detection at Source	Failure Mode or Error (Cause) detection in-station by operator through use of variable gauging or by automated controls in-station that will detect discrepant part and notify operator (light, buzzer, etc.). Gauging performed on setup and first-piece check (for set-up causes only).	5	Moderate
Problem Detection Post-Processing	Failure Mode detection post-processing by automated controls that will detect discrepant part and lock part to prevent further processing.	4	Moderately High
Problem Detection at Source	Failure Mode detection in-station by automated controls that will detect discrepant part and automatically lock part in station to prevent further processing.	3	High
Error Detection and/or Problem Prevention	Error (Cause) detection in-station by automated controls that will detect error and prevent discrepant part from being made.	2	Very High
Detection not Applicable; Error Prevention	Error (Cause) prevention as a result of fixture design, machine design or part design. Discrepant parts cannot be made because item has been error-proofed by process/product design.	1	Almost Certain

